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We all recall Euclid’s proof that there are infinitely many

primes:

Assume there are only finitely many, multiply them all

together, add 1, and take a prime factor.

Starting from the empty product, that is, 1, we get

2, 3, 7, 43, . . .

The next step is 2× 3× 7× 43 + 1 = 1807 = 13× 139, so we

have a choice of taking 13 as the next prime, 139, or both.
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A. A. Mullin suggested in 1963 to look at the sequence of
primes formed with Euclid’s construction where we always take
the least prime factor of the product plus 1.

There is a heuristic argument of D. Shanks that this sequence
contains every prime.

Mullin also suggested to always take the largest prime factor of
the product plus 1. It would seem obvious that this sequence
omits infinitely many primes, but it is not trivial to prove this
since the product plus 1 could conceivably be a power of the
least prime not found so far.

However, Booker (2012) was able to prove this second
sequence does omit infinitely many primes, and a simplified
proof was given by P. Pollack and E. Treviño (2014).
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Euclid’s construction of new primes from old motivated a

definition that appeared in the APR (Adleman, P, Rumely)

primality test: Start with a bunch of small primes, maybe all of

the primes to some point. Call these the initial primes and let I

denote their product. Then consider the primes p of the form

a+ 1 where a | I. Call these the Euclidean primes and let E

denote their product.

The APR primality test runs in time IO(1) on numbers n < E2.

Thus, one wants I small and E large. It’s shown that with a

judicious choice of I one has I ≤ (logE)O(log log logE), and so

the test is almost polynomial time.

The same I, E construction is used in the Lenstra finite fields

primality test.
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Euclid’s construction can be modified in several possible ways,
the first motivated by initial and Euclidean primes:

1. If n is the product of the primes so far, choose as the next
prime the least new prime dividing some a+ 1, with a | n.
That is,

min{p : p - n, p | a+ 1 for some a | n}.

2. If n is the product of the primes so far, choose as the next
prime some prime factor of some a+ b, where ab = n.

Booker (2016) gave a proof that there are valid choices in the
second sequence so that every prime is generated. I claimed
about 20 years ago, but never wrote up, that the first sequence
contains every prime, essentially in order.
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To illustrate the first sequence, we start with the empty

product 1, and find the primes 2,3. Can we now get 5? Well

none of 1 + 1, 2 + 1, 3 + 1, 6 + 1 is divisible by 5.
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To illustrate the first sequence, we start with the empty
product 1, and find the primes 2,3. Can we now get 5? Well
none of 1 + 1, 2 + 1, 3 + 1, 6 + 1 is divisible by 5.

But we can get 7. And then we get 5 via 14 + 1. And then we
get 11 via 10 + 1.

Continuing, the least new prime that can made from these:
7× 11 + 1 has the prime factor 13. We can pick up 17 from
3× 11 + 1. We can pick up 19 from 2× 5× 17 + 1, etc.

So, it really does seem that this sequence picks up every prime
in order, except that 5 and 7 are reversed. This assertion
immediately follows from: Every prime p ≥ 7 has the residue
class −1 represented by a squarefree number all of whose
primes are smaller than p.
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We prove the following stronger result:

Every prime p > 7 has each residue class mod p represented by

a squarefree number all of whose prime factors are at most p.

Not only does this assertion immediately prove that the first

sequence contains every prime (and in order starting with 11),

it also allows a short proof that the second sequence contains

every prime.

We prove the assertion via a combinatorial result of V. Lev

on sumsets and a numerically explicit Pólya–Vinogradov

inequality. Some computation is required for p < 3× 108.
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Fix some large prime p. Say a subgroup H of (Z/pZ)∗ is “good”
if each coset of H contains a squarefree number smaller than p.
We prove that if H is large, i.e., has small index, then it is
good.

The plan: Say H has index d and let χ be a character of
(Z/pZ)∗ of order d. Then H = kerχ. And a ∈ mH if and only if
χ(a) = χ(m). Thus,

1

d

d∑
i=1

χi(j)χ̄i(m)

is the indicator function for mH. Hence

1

d

d∑
i=1

∑
j<p

µ2(j)χi(j)χ̄i(m)

is the number of squarefree integers j < p with j ∈ mH.
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The philosophy with character sums is that the principal

character should give the main information, and the task at

hand is to show that the other characters mostly cancel out.

In our case, the principal character in

1

d

d∑
i=1

∑
j<p

µ2(j)χi(j)χ̄i(m)

is χd, and the contribution to the sum when i = d is

1

d

∑
j<p

µ2(j).

We know that the asymptotic density of the squarefree integers

is 6/π2, but to get a universal inequality we need the

“Schnirelmann density”. This is 53/88.
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Note, the Schnirelmann density of a set of positive integers A is

inf
n≥1

1

n

∑
a∈A∩[1,n]

1.

This density is useful in additive number theory: if A has

positive Schnirelmann density then there is some positive

integer k such that every number is contained in kA, the set of

k-fold sums of elements of A.

So, the contribution of the principal character is 1
d

∑
j<p µ

2(j),

which is at least 53
88(p− 1)/d.
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So, what should be done with the non-principal characters in

1

d

d∑
i=1

∑
j<p

µ2(j)χi(j)χ̄i(m) ?

We’d like to use a character sum estimate but µ2 is in the way.

So, first use inclusion-exclusion:∑
j<p

µ2(j)χi(j) =
∑
v≥1

µ(v)χi(v2)
∑

j<p/v2

χi(j).

The v = 1 term is 0. For v > p1/4, we use the trivial estimate

p/v2 in the inner sum to get a total contribution of < p3/4. For

1 < v < p1/4 we use the Pólya–Vinogradov inequality in the

inner sum, getting a total contribution that is O(p3/4 log p).
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Being a bit more careful with these last steps, and using a

numerically explicit version of the Pólya–Vinogradov inequality

due to Frolenkov and Soundararajan, we have

1

d

d−1∑
i=1

∣∣∣∣∣∣
∑
j<p

µ2(j)χi(j)χ̄i(m)

∣∣∣∣∣∣ ≤ d− 1

d
p3/4

(
1

4π
log p+

5

2

)
.

We want this expression to be smaller than 53
88(p− 1)/d. For

d < log p+ 1, this is true once p > 3× 108.

We have proved: For p > 3× 108 and d | p− 1 with

d < log p+ 1, and for the subgroup H of (Z/pZ)∗ of index d,

every coset contains a squarefree number smaller than p.
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Our goal is to show that every residue mod p contains a

p-smooth, squarefree number.

For each d | p− 1 with d < log p+ 1 and subgroup H of (Z/pZ)∗

of index d, let Cd,p be a fixed set of squarefree coset

representatives smaller than p, and let Sd,p be the set of primes

that divide a member of Cd,p. Further, let Sp be the union of

the sets Sd,p for d | p− 1, d < log p+ 1.

Then each #Sd,p < d log p and #Sp < 1
2(log p+ 1)3.
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We use this as follows. Take pairs of distinct primes q, r < p

which are not in Sp and consider residues m ≡ qr (mod p). Let

A denote the set of such m that arise in at least
√
p/ log p ways

as a product qr. By an averaging argument we show that

#A > p/ log p+ 2.

We would like to use members of A to fill up all of (Z/pZ)∗ by

multiplying them together. Failing that, we would at least like

to fill up a large subgroup.

We use an additive result of V. Lev: If A′ ⊂ {0,1, . . . , N}, then

there are positive integers

d ≤ κ := dN/(#A′ − 2)e, k ≤ 2κ+ 1

such that kA′ contains N consecutive multiples of d.
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We apply Lev’s theorem not to our set A of size > p/ log p+ 2,
but to the set A′ of discrete logarithms of members of A with
respect to some primitive root g mod p. That is, for each a ∈ A,
we take a′ ∈ {0,1, . . . , p− 2} where ga

′ ≡ a (mod p). So the set
kA′ corresponds to Ak, the set of k-fold products of members
of A. And kA′ having N (= p− 2) consecutive multiples of d
corresponds to Ak having N consecutive powers of gd.

Replacing d with (d, p− 1), we have that d ≤ κ, k ≤ 2κ+ 1, and
Ak contains the subgroup H of (Z/pZ)∗ of index d. Finally note
that κ < log p+ 1.

Recall that A consists of numbers qr where q, r are distinct
primes smaller than p. Now k-fold products of numbers qr need
not be squarefree, but each m ≡ qr (mod p) has many
representations as qr, so we can choose the representation to
have the product squarefree.
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Now we fill up the full group (Z/pZ)∗ using our squarefree coset

representatives, noting that none of the primes involved are

used in the pairs qr.

This proves that for every prime p > 3× 108, each residue class

mod p has a p-smooth, squarefree representative.

We would like to close the gap and show this holds for all p in

[11,3× 108].

We do this by brute force for p < 104.
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For p > 104, we proceed as follows. Let g be a primitive root

mod p. Each nonzero residue is of the form gh, where

h ∈ [1, p− 1]. Suppose that we have each g2i ≡ qiri (mod p) for

each 2i ≤ p− 1, where all of the primes qi, ri are distinct and

< p. Then we’re done, since each h ≤ p− 1 has a binary

representation.

To search for a pair q, r for a given i, we let q run over small

primes not already used, until r = q−1g2i mod p is a prime

that’s not already used. We are not guaranteed beforehand

that a suitable pair q, r will be found for g2i, but heuristically it

seems that it should work well, and in practice it did work well.

This completes our proof that every prime p ≥ 11 has every

residue class represented by a squarefree, p-smooth number.
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To close the talk, lets see the short proof that the second

sequence contains every prime.

Recall: If n is the product of the primes found so far, then we

choose a prime factor of some a+ b where ab = n.

Say p > 7, we have found all of the primes below p and have

not found p yet. Let n be the product of the primes found so

far. If (−n/p) = 1, then there is a solution a to a2 + n ≡ 0

(mod p), so that

a+ n/a ≡ 0 (mod p).

By our assertion, we can represent a (mod p) as a squarefree

product of the primes less than p, and then a | n, with

p | a+ n/a.
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So assume that (−n/p) = −1. This case is trickier, but there’s

a short proof that there is a solution a to(
a+ n/a

p

)
= −1. (1)

Assuming so, represent a as a squarefree product of primes < p,

so that a | n. Then choose q as any prime factor of a+ n/a

with (q/p) = −1 (at least one such q must exist), and take it as

the next prime in the sequence. The new product is qn and we

have (−qn/p) = 1, so we can find p with one more step.

Here’s why (1) is solvable. It’s equivalent to a3 + an being a

quadratic nonresidue mod p. The elliptic curve y2 = x3 + nx

has at most p+ 2p1/2 solutions mod p, and all but 1 of them

occur in pairs (x,±y), so there are values of x not

corresponding to a point on the curve; let a be one of them.
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Thank you
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