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1. Introduction

Let {un}n�0 be a linear recurrence sequence of integers satisfying a homogeneous linear
recurrence relation

un+k = a1un+k−1 + · · · + ak−1un+1 + akun for n = 0, 1, . . . , (1.1)

where a1, . . . , ak are integers with ak �= 0.
In this paper, we study the set of indices n which divide the corresponding term un,

that is, the set
Nu := {n � 1: n|un}.

But first, some background on linear recurrence sequences.
To the recurrence (1.1) we associate its characteristic polynomial

fu(X) := Xk − a1X
k−1 − · · · − ak−1X − ak =

m∏
i=1

(X − αi)σi ∈ Z[X],

c© 2012 The Edinburgh Mathematical Society 271



272 J. J. Alba González and others

where α1, . . . , αm ∈ C are the distinct roots of fu(X) with multiplicities σ1, . . . , σm,
respectively. It is then well known that the general term of the recurrence can be expressed
as

un =
m∑

i=1

Ai(n)αn
i for n = 0, 1, . . . , (1.2)

where Ai(X) are polynomials of degrees at most σi − 1 for i = 1, . . . , m, with coefficients
in K := Q[α1, . . . , αm]. We refer the reader to [6] for this and other known facts about
linear recurrence sequences.

For upper bounds on the distribution of Nu, the case of a linear recurrence with
multiple roots can pose problems (but see below). For example, the sequence of the
general term un = n2n for all n � 0 having characteristic polynomial fu(X) = (X − 2)2

shows that Nu may contain all the positive integers. So, we look at the case when fu(X)
has only simple roots. In this case, the relation (1.2) becomes

un =
k∑

i=1

Aiα
n
i for n = 0, 1, . . . . (1.3)

Here, A1, . . . , Ak are constants in K. We may assume that none of them is zero, since
otherwise a little bit of Galois theory shows that the integer sequence {un}n�0 satisfies
a linear recurrence of a smaller order.

We remark in passing that there is no real obstruction in reducing to the case of
simple roots. Indeed, let D ∈ N be a common denominator of all the coefficients of all
the polynomials Ai(X) for i = 1, . . . , m. That is, the coefficients of each DAi are algebraic
integers. Then

Dun =
m∑

i=1

DAi(0)αn
i +

m∑
i=1

D(Ai(n) − Ai(0))αn
i .

If n ∈ Nu, then n|Dun. Since n certainly divides∗ the algebraic integer

m∑
i=1

D(Ai(n) − Ai(0))αn
i ,

it follows that n divides
∑m

i=1 DAi(0)αn
i . If this is identically zero (i.e. Ai(0) = 0 for

all i = 1, . . . , m), then we are in an instance similar to the instance of the sequence of
general term un = n2n for all n � 0 mentioned above. In this case, Nu contains at least
a positive proportion of all the positive integers (namely, all n coprime to D). Otherwise,
we may set

wn =
m∑

i=0

DAi(0)αn
i for n = 0, 1, . . . .

A bit of Galois theory shows that wn is an integer for all n � 0, and the sequence
{wn}n�0 satisfies a linear recurrence relation of order � := #{1 � i � m : Ai(0) �= 0}

∗ Here, for two algebraic integers α and β and a positive integer m we write α ≡ β (mod m) to mean
that (α − β)/m is an algebraic integer. When β = 0 we say that m divides α.
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with integer coefficients, which furthermore has only simple roots. Hence, Nu ⊆ Nw, and
therefore there is indeed no loss of generality when proving upper bounds in dealing only
with linear recurrent sequences with distinct roots.

We set
∆u :=

∏
1�i<j�k

(αi − αj)2 = disc(fu) (1.4)

for the (non-zero) discriminant of the sequence {un}n�0, or of the polynomial fu(X). It
is known that ∆u is an integer. We also assume that {un}n�0 is non-degenerate, which
means that αi/αj is not a root of 1 for any 1 � i < j � m. Henceforth, all linear
recurrences have only simple roots and are non-degenerate.

When k = 2, u0 = 0, u1 = 1 and gcd(a1, a2) = 1, the sequence {un}n�0 is called a
Lucas sequence. The formula (1.3) for the general term is

un =
αn

1 − αn
2

α1 − α2
for n = 0, 1, . . . . (1.5)

That is, we can take A1 = 1/(α1 − α2) and A2 = −1/(α1 − α2) in (1.3). In the case of a
Lucas sequence {un}n�0, the fine structure of the set Nu has been described in [8,17] (see
also the references therein). We also note that divisibility of terms of a linear recurrence
sequence by arithmetic functions of their index have been studied in [12] (see also [11]
for the special case of Fibonacci numbers).

For a set A and a positive real number x we set A(x) = A ∩ [1, x]. Throughout the
paper, we study upper and lower bounds for the number #Nu(x). In particular, we prove
that Nu is of asymptotic density zero.

Observe first that if k = 1, then un = Aan
1 holds for all n � 0 with some integers A �= 0

and a1 �∈ {0,±1}. Its characteristic polynomial is fu(X) = X − a1. It is easy to see that
in this case #Nu(x) = O((log x)ω(|a1|)), where for an integer m � 2 we use ω(m) for the
number of distinct prime factors of m. So, from now on, we assume that k � 2.

Note next that for the sequence of general term un = 2n−2 for all n � 0 having charac-
teristic polynomial fu(X) = (X − 1)(X − 2), Fermat’s Little Theorem implies that every
prime is in Nu, so that the Prime Number Theorem and estimates for the distribution of
pseudoprimes∗ show that it is possible for the estimate #Nu(x) = (1 + o(1))x/ log x to
hold as x → ∞. However, we show that #Nu(x) cannot have a larger order of magnitude.

Theorem 1.1. For each k � 2, there is a positive constant c0(k) depending only on k

such that if the characteristic polynomial of a non-degenerate linear recurrence sequence
{un}n�0 of order k has only simple roots, then the estimate

#Nu(x) � c0(k)
x

log x

holds for x sufficiently large.

∗ A pseudoprime is a composite number n which divides 2n − 2. The paper [14] shows that there are
few odd pseudoprimes compared with primes, while [10] does the same for even pseudoprimes.
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In the case of a Lucas sequence, we have a better bound. Let

L(x) := exp(
√

log x log log x). (1.6)

Theorem 1.2. Assume that {un}n�0 is a Lucas sequence. Then the inequality

#Nu(x) � x

L(x)1+o(1) (1.7)

holds as x → ∞.

It follows from a result of Somer [18, Theorem 8] that Nu is finite if and only if ∆u = 1,
and in this case Nu = {1}.

For Lucas sequences with a2 = ±1, we also have a rather strong lower bound on
#Nu(x). Our result depends on the current knowledge of the distribution of y-smooth
values of p2 − 1 for primes p, that is, values of p2 − 1 that do not have prime divisors
exceeding y. We use Π(x, y) to denote the number of primes p � x for which p2 − 1
is y-smooth. Since the numbers p2 − 1 with p prime are likely to behave as ‘random’
integers from the point of view of the size of their prime factors, it seems reasonable to
expect that behaviour of Π(x, y) resembles the behaviour of the counting function for
smooth integers. We record this in a very relaxed form as the assumption that for some
fixed real v � 1 we have

Π(yv, y) � yv+o(1) (1.8)

as y → ∞. In fact, a general result from [3, Theorem 1.2] implies that (1.8) holds with
any v ∈ [1, 4

3 ).

Theorem 1.3. There is a set of integers L such that L ⊂ Nu for any Lucas sequence
u with a2 = ±1, and such that if (1.8) holds with some v > 1, we have

#Nu(x) � #L(x) � xϑ+o(1)

as x → ∞, where

ϑ := 1 − 1
v
.

In particular, since, as we have already mentioned, any value of v < 4
3 is admissible,

we can take
ϑ = 1

4 .

Furthermore, since (1.8) is expected to hold for any v > 1, it is very likely that the bound
of Theorem 1.3 holds with ϑ = 1.

Finally, we record a lower bound on #N (x) when a2 �= ±1 and ∆u �= 1.

Theorem 1.4. Let {un}n�0 be any Lucas sequence with ∆u �= 1. Then there exist
positive constants c1 and x0 depending on the sequence such that for x > x0 we have

#Nu(x) > exp(c1(log log x)2).

Throughout the paper, we use x for a large positive real number. We use the Landau
symbol O and the Vinogradov symbols � and 	 with the usual meaning in analytic
number theory. The constants implied by them may depend on the sequence {un}n�0,
or only on k. We use c0, c1, . . . for positive constants which may depend on {un}n�0.
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2. Preliminary results

As in the proof of [6, Theorem 2.6], set

Du(x1, . . . , xk) := det(αxj

i )1�i,j�k.

For a prime number p not dividing ak, let Tu(p) be the maximal non-negative integer T

with the property that p does not divide
∏

0�x2,...,xk�T

max{1, |NK/Q(Du(0, x2, . . . , xk))|}.

It is known that such T exists. In the above relation, x2, . . . , xk are integers in [1, T ], and
for an element α of K we use NK/Q(α) for the norm of α over Q. Since α1, . . . , αk are
algebraic integers in K, it follows that the numbers NK/Q(Du(0, x2, . . . , xk)) are integers.

Observe that Tu(p) = 0 if and only if k = 2 and p is a divisor of ∆u = (α1 − α2)2.
More can be said in the case when {un}n�0 is a Lucas sequence. In this case, we have

|NK/Q(Du(0, x2))| = |αx2
2 − αx2

1 |2 = |∆u|2|ux2 |2, x2 = 1, 2, . . . .

Thus, if p does not divide the discriminant ∆u = (α1 − α2)2 = a2
1 + 4a2 of the sequence

{un}n�0, then Tu(p) + 1 is in fact the minimal positive integer � such that p|u�. This
is sometimes called the index of appearance of p in {un}n�0 and is denoted by zu(p).
The index of appearance zu(m) can be defined for composite integers m in the same way
as above, namely as the minimal positive integer � such that m|u�. This exists for all
positive integers m coprime to a2, and has the important property that m|un if and only
if zu(m)|n. For any γ ∈ (0, 1), let

Pu,γ = {p : Tu(p) < pγ}.

Lemma 2.1. For xγ , y � 2, the estimates

#{p : Tu(p) � y} � yk

log y
, #Pu,γ(x) � xkγ

γ log x

hold, where the implied constants depend only on the sequence {un}n�0.

Proof. It is clear that the second inequality follows immediately from the first with
y = xγ , so we prove only the first one. Suppose that Tu(p) � y. In particular, there exists
a choice of integers x2, . . . , xk all in [1, y + 1] such that p divides

max{1, |NK/Q(Du(0, x2, . . . , xk))|}.

This argument shows that

∏
Tu(p)�y

p
∣∣∣ ∏
1�x2,...,xk�y+1

max{1, |NK/Q(Du(0, x2, . . . , xk))|}. (2.1)
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There are at most (y + 1)k−1 = O(yk−1) possibilities for the (k − 1)-tuple (x2, . . . , xk).
For each one of these (k − 1)-tuples, we have that

|NK/Q(Du(0, x2, . . . , xk))| = exp(O(y)).

Hence, the right-hand side in (2.1) is of size exp(O(yk)). Taking logarithms in the inequal-
ity implied by (2.1), we get that

∑
Tu(p)�y

log p = O(yk).

If there are a total of n primes involved in this sum and if pi denotes the ith prime, then

n∑
i=1

log pi = O(yk),

so that, in the language of the Prime Number Theorem, θ(pn) � yk. It follows that
pn � yk and n � yk/ log y, which is what we wanted to prove. �

The parameter Tu(p) is useful to bound the number of solutions n ∈ [1, x] of the
congruence un ≡ 0 (mod p) (see [17] and [6, Theorem 5.11]). The following result, whose
proof is similar, relates Tu(p) to the solutions to unp ≡ 0 (mod p).

Lemma 2.2. There exists a constant c2(k) depending only on k with the following
property. Suppose that {un}n�0 is a linearly recurrent sequence of order k satisfying
recurrence (1.1). Suppose that p is a prime coprime to ak∆u and to the denominators
of the numbers Ai in (1.3). Assume that there exists a positive integer s such that us

is coprime to p. Then, for any real X � 1, the number of solutions Ru(X, p) of the
congruence

upn ≡ 0 (mod p) with 1 � n � X

satisfies the bound

Ru(X, p) � c2(k)
(

X

Tu(p)
+ 1

)
.

Proof. By a result of Schlickewei [15] (see also [16]) there is a constant C(k), depend-
ing only on k, such that for any B1, . . . , Bk ∈ K, not all zero, the equation

k∑
i=1

Biα
x
i = 0

has at most C(k) solutions in positive integers x.
Let wn = unp, so that {wn}n�0 is also a linearly recurrent sequence of order k that

is clearly closely related to u. Note first that if α1, . . . , αk are the characteristic roots of
{un}n�0, then αp

1, . . . , α
p
k are the characteristic roots of {wn}n�0. Hence,

fw(X) =
k∏

i=1

(X − αp
i ).
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Observe that Tu(p) exists because p does not divide ak. Furthermore, from the calcu-
lation

NK/Q(Dw(x1, . . . , xk)) = NK/Q(det(αpxj

i )) ≡ NK/Q(det(αxj

i ))p

≡ (NK/Q(Du(x1, . . . , xk))p (mod p),

we conclude that if 0 < x2 < · · · < xk are any positive integers, then p divides
NK/Q(Du(0, x2, . . . , xk)) if and only if p divides NK/Q(Dw(0, x2, . . . , xk)).

Let I be any interval of length Tu(p) and let n1 < · · · < n� be all the integers n ∈ I
such that wn ≡ 0 (mod p). Then we have

k∑
i=1

Aiα
pnj

i ≡ 0 (mod p), j = 1, 2, . . . , �.

We rewrite each congruence as

k∑
i=1

(Aiα
pn1
i )αp(nj−n1)

i ≡ 0 (mod p), j = 1, 2, . . . , �. (2.2)

Let π be any prime ideal dividing p in OK . We view the ‘unknowns’ Aiα
pn1
i in the

residue ring OK/πOK . By assumption, no denominator of A1, . . . , Ak is in π. Since u is
not identically 0 (mod p), not all Ai are in π, so the above solution (Aiα

pn1
i ) is non-zero

in (OK/πOK)k.
Assume that

� � C(k) + k. (2.3)

Set x1 = 0, and out of the set X2 = {nj − n1 : j = 2, . . . , �} choose x2 ∈ X2 with

det(αxj

i )1�i,j�2 �= 0.

This is possible by the above result of Schlickewei [15] since #X2 = �−1 � C(k)+k−1 >

C(k). For k � 3, set X3 = X2 \ {x2} and choose x3 ∈ X3 with

det(αxj

i )1�i,j�3 �= 0,

which is still possible since #X3 = � − 2 � C(k) + k − 2 > C(k). By the choice of x2,
this is a non-trivial exponential equation in x3. Continuing like this, after k − 1 steps we
obtain x2, . . . , xk ∈ X with

Du(0, x2, . . . , xk) �= 0. (2.4)

However, by (2.2), we have π|Dw(0, x2, . . . , xk); therefore,

p|NK/Q(π)|NK/Q(Dw(0, x2, . . . , xk)),

which is impossible by the definition of Tu(p) and the condition (2.4). Hence, the inequal-
ity (2.3) is false and the result follows. �
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When {un}n�0 is a Lucas sequence, we set

Qu,γ = {p : zu(p) � pγ}.

The remarks preceding Lemma 2.1 show that #Qu,γ(x) = #Pu,γ(x) + O(1). Hence,
Lemma 2.1 implies the following result.

Lemma 2.3. For x > 1, the estimate

#Qu,γ(x) � x2γ

log x

holds, where the implied constant depends only on the sequence {un}n�0.

As usual, we denote by Ψ(x, y) the number of integers n � x with P (n) � y, where
P (n) is the largest prime factor of n. By [2, Corollary to Theorem 3.1], we have the
following well-known result.

Lemma 2.4. For x � y > 1, the estimate

Ψ(x, y) = x exp(−(1 + o(1))v log v)

uniformly in the range y > (log x)2 as long as v → ∞, where

v :=
log x

log y
.

3. The proof of Theorem 1.1

We assume that x is large. We split the set Nu(x) into several subsets. Let P (n) be the
largest prime factor of n. Let y := x1/ log log x and let

N1(x) := {n � x : P (n) � y},

N2(x) := {n � x : n �∈ N1(x) and P (n) ∈ Pu,1/(k+1)},

N3(x) := N (x) \ (N1(x) ∪ N2(x)).

We now bound the cardinalities of each one of the above sets.
For N1(x), by Lemma 2.4, we obtain

#N1(x) = Ψ(x, y) = x exp(−(1 + o(1))v log v) (3.1)

as x → ∞, where

v =
log x

log y
= log log x.

Suppose now that n ∈ N2(x). Then n = pm, where p = P (n) � max{y, P (m)}.
In particular, p � x/m; therefore, m � x/y. Since we also have p ∈ Pu,1/(k+1)(x/m),
Lemma 2.1 implies that the number of such primes p � x/m is O((x/m)k/(k+1)), where
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the implied constant depends on the sequence {un}n�0. Summing the above inequality
over all possible values of m � x/y, we get

#N2(x) � xk/(k+1)
∑

1�m�x/y

1
mk/(k+1)

� xk/(k+1)
∫ x/y

1

dt

tk/(k+1)

= ((k + 1)xk/(k+1))t1/(k+1)|x/y
1

� x

y1/(k+1) . (3.2)

Now let n ∈ N3(x). As previously, we write n = pm, where p = P (n) > y. Thus,
m � x/p < x/y. We assume that x (hence, y) is sufficiently large. Since n ∈ Nu, we have
that n|un; therefore, p|un. Furthermore, Tu(p) � p1/(k+1). We fix p and count the number
of possibilities for m. To this end, let {w�}��0 be the sequence defined as w� = up� for all
� � 0. This is a linearly recurrent sequence of order k. We would like to apply Lemma 2.2
to it to bound the number of solutions to the congruence

wm ≡ 0 (mod p), where 1 � m � x/p.

If the conditions of Lemma 2.2 are satisfied, then this number, denoted by Rw(x/p, p),
satisfies

Rw(x/p, p) � c2(k)
(

x

pTw(p)
+ 1

)
.

Let us check the conditions of Lemma 2.2. Note first that if α1, . . . , αk are the charac-
teristic roots of {un}n�0, then αp

1, . . . , α
p
k are the characteristic roots of {w�}��1. Hence,

fw(X) =
k∏

i=1

(X − αp
i ).

In particular, the term aw,k corresponding to the recurrence {w�}��1 satisfies aw,k = ap
k

assuming that y > 2. Thus, assuming further that y > |ak|, we then have that p does not
divide ak; therefore, p does not divide aw,k either. Next, note that

∆w =
∏

1�i<j�k

(αp
i − αp

j )
2.

Modulo p, we have that

∆w ≡
( ∏

1�i<j�k

(αi − αj)2
)p

≡ ∆p
u (mod p).

From the above congruence, we easily get that p|∆w if and only if p|∆u. Thus, assuming
that x is sufficiently large such that y > |∆u|, we then have that p � ∆u, therefore p � ∆w

either.
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So far, we have checked that p does not divide aw,k∆w, which is the first assumption
in the statement of Lemma 2.2.

Let us check the next assumption.
Note that, since p � ∆u, the characteristic polynomial fu(X) of {u�}��0 has only simple

roots modulo p. Since p does not divide the last coefficient ak for the recurrence for
{un}n�0 either, it follows that this sequence is purely periodic modulo p. Let tp be its
period modulo p. It is known that tp is coprime to p. In fact, tp is a divisor of the number

lcm[pi − 1: i = 1, 2, . . . , k].

Choose some n0 > 0 such that un0 �= 0. Let x be so large such that y > |un0 |. Since p > y,
we have p � un0 . And since gcd(p, tp) = 1, there exists an integer s with sp ≡ n0 (mod tp).
Thus,

ws = usp ≡ un0 (mod p).

In particular, ws is coprime to p. Hence, for x sufficiently large, the second assumption
from Lemma 2.2 holds for the sequence {w�}��0.

Next we show that Tu(p) = Tw(p). Observe that this number exists (for both the
sequences {u�}��0 and {w�}��0) because p does not divide ak. Indeed, the claimed equal-
ity follows easily from the following calculation:

Dw(x1, . . . , xk) = det(αpxj

i )1�i,j�k

≡ (det(αxj

i ))p (mod p)

≡ Du(x1, . . . , xk)p (mod p).

Since n ∈ N3(x), we have that Tw(p) = Tu(p) � p1/(k+1).
Lemma 2.2 now guarantees that the number of choices for m once p is fixed is

Rw(x/p, p) � c2(k)
(

x

p1+1/(k+1) + 1
)

.

To summarize, we have

N3(x) �
∑

y�p�x

c2(k)
(

x

p1+1/(k+1) + 1
)

� c2(k)
(

π(x) + x
∑
y�p

1
p1+1/(k+1)

)

� c2(k)
(

π(x) + x

∫ ∞

y

dt

t1+1/(k+1)

)
.

Therefore,

N3(x) � c2(k)
(

π(x) + O

(
(k + 1)x
y1/(k+1)

))
. (3.3)

Comparing (3.1)–(3.3), we get that

#N (x) � c2(k)π(x) +
x

exp((1 + o(1))v log v)
+ O

(
x

y1/(k+1)

)
(3.4)
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as x → ∞, where the implied constant depends on the recurrence {un}n�0. By our choice
of y as x1/ log log x, the second and third terms on the right-hand side of (3.4) are both
o(π(x)) as x → ∞, so we have the theorem.

4. The proof of Theorem 1.2

As in Theorem 1.1, we divide the numbers n ∈ Nu(x) into several classes:

(i) N1(x) := {n ∈ Nu(x) : P (n) � L(x)1/2};

(ii) N2(x) := {n ∈ Nu(x) : P (n) � L(x)3};

(iii) N3(x) := Nu(x) \ (N1(x) ∪ N2(x)).

It follows from Lemma 2.4 that

#N1(x) � Ψ(x, L(x)1/2) =
x

L(x)1+o(1)

as x → ∞.
For n ∈ Nu and p|n, we have n ≡ 0 (mod p) and n ≡ 0 (mod zu(p)). For p not dividing

the discriminant of the characteristic polynomial for u (and so for p sufficiently large),
we have zu(p)|p ± 1, so that gcd(p, zu(p)) = 1. Thus, the conditions n ∈ Nu, p|n and
p sufficiently large jointly force n ≡ 0 (mod pzu(p)). Hence, if p is sufficiently large, the
number of n ∈ Nu(x) with P (n) = p is at most Ψ(x/pzu(p), p) � x/pzu(p).

Thus, for large x,

#N2(x) �
∑

p>L(x)3

x

pzu(p)
=

∑
p>L(x)3

zu(p)�L(x)

x

pzu(p)
+

∑
p>L(x)3

zu(p)>L(x)

x

pzu(p)
.

The first sum on the right has, by Lemma 2.1, at most L(x)2 terms for x large, each term
being smaller than x/L(x)3, so the sum is bounded by x/L(x). The second sum on the
right has terms smaller than x/pL(x) and the sum of 1/p is of magnitude log log x, so the
contribution here is x/L(x)1+o(1) as x → ∞. Thus, #N2(x) � x/L(x)1+o(1) as x → ∞.

For any non-negative integer j, let Ij := [2j , 2j+1). For N3, we cover I :=
[L(x)1/2, L(x)3) by these dyadic intervals, and we define bj via 2j = L(x)bj . We shall
assume that the variable j runs over just those integers with Ij not disjoint from I. For
any integer k, define Pj,k as the set of primes p ∈ Ij with zu(p) ∈ Ik. Note that, by
Lemma 2.1, we have #Pj,k � 4k. We have

#N3(x) �
∑

j

∑
k

∑
p∈Pj,k

∑
n∈Nu(x)
P (n)=p

1

�
∑

j

∑
k

∑
p∈Pj,k

Ψ

(
x

pzu(p)
, p

)

=
∑

j

∑
k

∑
p∈Pj,k

x

pzu(p)L(x)1/2bj+o(1) ,
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as x → ∞, where we have used Lemma 2.4 for the last estimate. For k > j/2, we use the
estimate ∑

p∈Pj,k

1
pzu(p)

� 2−k
∑
p∈Ij

1
p

� 2−k

for x large. For k � j/2, we use the estimate

∑
p∈Pj,k

1
pzu(p)

� 4k

2j2k
= 2k−j ,

since there are at most O(4k) such primes, as noted before. Thus,

∑
k

∑
p∈Pj,k

1
pzu(p)

=
∑

k>j/2

∑
p∈Pj,k

1
pzu(p)

+
∑

k�j/2

∑
p∈Pj,k

1
pzu(p)

� 2−j/2

= L(x)−bj/2.

We conclude that

#N3(x) �
∑

j

x

L(x)bj/2+1/2bj+o(1) as x → ∞.

Since the minimum value of t/2+1/(2t) for t > 0 is 1 occurring at t = 1, we conclude that
#N3(x) � x/L(x)1+o(1) as x → ∞. With our prior estimates for #N1(x) and #N2(x),
this completes our proof.

It is possible that, using the methods of [5,7], a stronger estimate can be made.

5. The proof of Theorem 1.3

Since a2 = ±1, it is easy to see that the sequence u is purely periodic modulo any integer
m. So, the index of appearance zu(m) defined in § 2 exists for all positive integers m.
Further, by examining the explicit formula (1.5) one can see that for any prime power
q = pk we have

zu(pk)|zu(p)pk−1. (5.1)

In fact this is known in much wider generality.
Now, for any real number y � 1 let

My := lcm[m : m � y].

We say that a positive integer n is Lucas special if it is of the form n = 2sMy for some
y � 3 and for some square-free positive integer s such that gcd(s, My) = 1 and for every
prime p|s we have p2 − 1|My. Let L denote the set of Lucas special numbers.

We now show that L ⊂ Nu for any Lucas sequence u with a2 = ±1. To see this it
suffices to show for any n = 2sMy ∈ L and for any prime power q|n, we have zu(q)|n.
This is easy for q|s, since then q = p is prime and either zu(p) = p (in the case p|∆u) or
zu(p)|p ± 1 (otherwise). And since p2 − 1|My, we have zu(p)|n in either case.
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If q|2My, we consider the cases of odd and even q separately.

(i) When q is odd, we have q|My so q � y. Write q = pk with p prime, so that (5.1)
implies zu(q)|(p − 1)pk−1, pk or (p + 1)pk−1. We have pk−1 � y and if p + 1 � y,
then z(q)|My. The only case not covered is p + 1 > y (so p ∈ (y − 1, y]), k = 1,
zu(p) = p + 1. Write p + 1 = 2jm, where m is odd. Then 2j |2My and m|2My, so
p + 1|2My. Thus, in all cases, zu(q)|2My so zu(q)|n.

(ii) When q = 2k is a power of 2 with q|2My, since zu(2) ∈ {2, 3}, we see from (5.1) that
either zu(2k)|2k or zu(2k)|3 · 2k−1. Since y � 3, in either case we have zu(q)|2My.

We now use the method of Erdős [4] to show that the set L is rather large. For this
we take

y :=
log x

log log x
and z := yv,

with v satisfying (1.8). We say that q is a proper prime power if q = �k for a prime � and
an integer k � 2.

We define P as the set of primes p such that:

(i) p ∈ [y + 1, z];

(ii) p2 − 1 is y-smooth;

(iii) p2 − 1 is not divisible by any proper prime power q > y.

Note that if q is a proper prime power and q|p2 − 1, then q|p ± 1, unless q is even, in
which case q/2|p ± 1. Since trivially there are only O(t1/2) proper prime powers q � t,
there are only O(zy−1/2) primes p � z for which p2 − 1 is divisible by a proper prime
power q > y. Thus, recalling the assumption (1.8), we obtain

#P � Π(z, y) − y + O(zy−1/2) = z1+o(1),

provided that x → ∞.
It is also obvious that for any square-free positive integer s composed of primes p ∈ P,

the integer n = 2sMy is Lucas special.
We now take the set Lv(x) of all such Lucas special integers n = 2sMy, where s is

composed of

r :=
⌊

log x − 2y

log z

⌋

distinct primes p ∈ P. Since by the Prime Number Theorem the estimate My =
exp((1 + o(1))y) holds as x → ∞, we see that for sufficiently large x we have n � x

for every n ∈ Lv(x).
For the cardinality of Lv(x) we have

#Lv(x) �
(

#P
r

)
�

(
#P
r

)r

.
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Since
r = (v−1 + o(1))

log x

log log x
and

#P
r

= (log x)v−1+o(1)

as x → ∞, we obtain #Lv(x) � x1−1/v+o(1) as x → ∞. Noting that Lv(x) ⊂ L(x)
concludes the proof.

6. The proof of Theorem 1.4

Since ∆u ≡ 0, 1 (mod 4) and ∆u �= 0, 1, it follows that |∆u| > 1. Let r be some prime
factor of ∆u. Then rk ∈ Nu for all k � 0 [13, pp. 210 and 295]. We let k be a large positive
integer and look at urk+4 . By Bilu et al .’s primitive divisor theorem [1], un has a primitive
prime factor for all n � 31. Recall that a primitive prime factor of un is a prime factor
p of un which does not divide ∆uum for any positive integer m < n. Such a primitive
prime factor p always satisfies p ≡ ±1 (mod n). Since there are at most five values of
k � 0 such that rk � 30 for the same integer r > 1, and since um|un if m|n, we conclude
that urk+4 has at least τ(rk+4) − 5 = k distinct prime factors p �= r, where τ(m) is the
number of divisors of the positive integer m. Let the first k be p1 < · · · < pk. Assume
that |α1| � |α2|. For large n, we have that |α1|n/2 < |un| < 2|α1|n [6, Theorem 2.3]. If
β1, . . . , βk are non-negative integral exponents such that

βi � log(x/rk+4)
k log pi

,

then rk+4pβ1
1 · · · pβk

k � x is in Nu [13, p. 210], so it is counted by #Nu(x). Hence,

#Nu(x) �
k∏

i=1

(⌊
log(x/rk+4)

k log pi

⌋
+ 1

)

�
(

log(x/rk+4)
k

)k 1∏k
i=1 log pi

�
(

log(x/rk+4)
2rk+4 log |α1|

)k

,

where the last inequality follows from the mean-value inequality

k∏
i=1

log pi �
(

1
k

k∑
i=1

log pi

)k

�
(

log(|urk+4 |)
k

)k

<

(
rk+4 log |α1| + log 2

k

)k

<

(
2rk+4 log |α1|

k

)k

,
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for k � 2. In the above, we have also used the fact that |un| < 2|α1|n holds for all n � 1
with the choice n := rk+4. Let c3 := 2 log |α1|. The above lower bound is

#Nu(x) �
(

log x

rk+4c3
+ O

(
k

rk

))k

=
(

log x

rk+4c3

)k(
1 + O

(
k2

log x

))

	
(

log x

rk+4c3

)k

provided that
k = o(

√
log x), (6.1)

as x → ∞, which is now assumed. So, it suffices to look at
(

log x

rk+4c3

)k

= exp(k log(log x/c3) − k(k + 4) log r).

Let A := log(log x/c3). In order to maximize the function f(t) := tA − t(t + 4) log r, we
take its derivative and set it equal to zero to get A − 2t log r − 4 log r = 0; therefore,

t =
A − 4 log r

2 log r
=

A

2 log r
− 2.

Thus, taking k := �A/(2 log r) − 2 (so that (6.1) is satisfied), we get that

f(k) = f(t) + O(f ′(t)) =
A2

4 log r
+ O(A).

Hence,

#Nu(x) � exp
(

(log(log x/c3))2

4 log r
+ O(log log x)

)

= exp
(

(log log x)2

4 log r
+ O(log log x)

)
,

which implies the desired conclusion with any constant c1 < 1/(4 log r).

7. Remarks

We end with a result showing that it is quite possible for #Nu(x) to be large under quite
mild conditions. Observe that the sequence un = 2n − 2 has the property that u1 = 0.
Here is a more general version of this fact.

Proposition 7.1. Let k � 2 and {un}n�0 be a linearly recurrent sequence of order k

satisfying recurrence (1.1). Assume that there exists a positive integer n0 coprime to ak

such that un0 = 0. Then
#Nu(x) 	 x/ log x,

where the implied constant depends on the sequence {un}n�0.
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Proof. Since n0 is coprime to ak, it follows that {un}n�0 is purely periodic modulo
n0. Let tn0 be this period. Now, let Ru be the set of primes p such that fu(X) splits into
linear factors modulo p. The set of such primes has a positive density by the Chebotarev
density theorem. We claim that

Su ⊆ Nu, (7.1)

where
Su := {pn0 : p ∈ Ru and p > n0|∆u|}.

The above inclusion implies the desired bound since then

#Nu(x) � #Ru(x/n0) + O(1) 	 x/ log x.

Since {un}n�0 modulo n0 is purely periodic with period tn0 , we get that

upn0 ≡ un0 ≡ 0 (mod n0). (7.2)

Next, observe that since the polynomial fu(X) factors in linear factors modulo p, we
get that αp

i ≡ αi (mod p) for all i = 1, . . . , k. In particular, αpn0
i ≡ αn0

i (mod p) for
all i = 1, . . . , k. Since the denominators of the coefficient Ai, i = 1, . . . , k, in (1.3) are
divisors of ∆u and p > |∆u|, it follows that such denominators are invertible modulo p;
therefore, Aiα

pn0
i ≡ Aiα

n0
i (mod p) for all i = 1, . . . , k. Summing up these congruences

for i = 1, . . . , k, we get

upn0 =
k∑

i=1

Aiα
pn0
i ≡

k∑
i=1

Aiα
n0
i ≡ un0 ≡ 0 (mod p). (7.3)

From the congruences (7.2) and (7.3), we get that both p and n0 divide upn0 , and since
p is coprime to n0, we get that pn0|upn0 . This completes the proof of the inclusion (7.1)
and of the proposition. �

The condition that n0 is coprime to ak is not always necessary. The conclusion of
Proposition 7.1 may hold without this condition, as in the example of the sequence of
general term

un = 10n − 7n − 2 · 5n − 1 for all n � 0,

for which we can take n0 = 2. Observe that k = 4,

fu(X) = (X − 10)(X − 7)(X − 5)(X − 1),

and n0 is not coprime to a4 = −350, yet one can check that the divisibility relation
2p|u2p holds for all primes p � 11. We do not give further details.

Let Mu(x) be the set of integers n � x with n|un and n is not of the form pn0, where
p is prime and un0 = 0. It may be that in the situation of Theorem 1.1 we can get a
smaller upper bound for #Mu(x) than for #Nu(x). We can show this in a special case.
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Proposition 7.2. Assume that {un}n�0 is a linearly recurrent sequence of order k

whose characteristic polynomial splits into distinct linear factors in Z[X]. There is a
positive constant c4(k) depending on k such that for all sufficiently large x (depending
on the sequence u), we have #Mu(x) � x/L(x)c4(k).

Proof. Let y = L(x). We partition Mu(x) into the following subsets:

M1(x) := {n ∈ Mu(x) : P (n) � y};

M2(x) := {n ∈ Mu(x) : there is a prime p|n, p > y, pTu(p) � kx};

M3(x) := Mu(x) \ (M1(x) ∪ M2(x)).

As in the proof of Theorem 1.2, we see that Lemma 2.4 implies that #M1(x) �
x/L(x)1/2+o(1) as x → ∞.

As in the proof of Theorem 1.1,

#M2(x) �
∑

y<p�x
pTu(p)�kx

(
x

pTu(p)
+ 1

)
�

∑
y<p�x

x

pTu(p)
.

We split this summation according to p ∈ Pu,1/(k+1) and p �∈ Pu,1/(k+1), respectively.
Lemma 2.1 shows that #Pu,1/(k+1)(t) � tk/(k+1)/ log t. Thus,∑

y<p�x
p∈Pu,1/(k+1)

x

pTu(p)
�

∑
y<p�x

p∈Pu,1/(k+1)

x

p
� x

y1/(k+1)

and ∑
y<p�x

p�∈Pu,1/(k+1)

x

pTu(p)
�

∑
y<p�x

x

py1/(k+1) � x log log x

y1/(k+1) .

Hence,
#M2(x) � x

L(x)1/(k+1)+o(1) as x → ∞.

Suppose now that n ∈ M3(x). Let p|n with pTu(p) > kx. Using as before the notation
tp for the period of u modulo p, as well as the fact that Tu(p) � ktp and tp|p − 1 (since
fu splits in linear factors over Q[X]), we have

kx < pTu(p) � kptp � kp2,

so that p >
√

x. Thus, n can have at most one prime factor p with pTu(p) > kx. So, if
n ∈ M3(x), we may assume that n = mp, where p >

√
x > m, and P (m) � y. Further,

we may assume that um �= 0. Since p|upm and tp|p − 1, we have p|um. Now the number
of prime factors of um is O(m). Since the number of n ∈ M3(x) with such a prime p|n
is O(x/(pTu(p)) + 1) = O(1), we have

#M3(x) �
∑

m<
√

x
P (m)�y

m �
√

xΨ(
√

x, y) =
x

L(x)1/4+o(1) as x → ∞,

using Lemma 2.4.
We conclude that the result holds with c4(k) := min{1/5, 1/(k + 2)}, say. �
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Finally, we note that for a given non-constant polynomial g(X) ∈ Z[X] one can consider
the more general set

Nu,g := {n � 1: g(n)|un}.

We fix some real y < x1/2 and note that by the Brun sieve (see [9, Theorem 2.3]), there
are at most

N1 � x log y

log x
(7.4)

values of n � x such that g(n) does not have a prime divisor in the interval [y, x1/2]. We
also note that for a prime p not dividing the content of g, the divisibility p|g(n) puts n

in at most deg g arithmetic progressions. Thus, using Lemma 2.2 as it was used in the
proof of Theorem 1.1, the number of other n � x with g(n)|un can be estimated as

N2 �
∑

p∈[y,x1/2]

∑
n�x

p|g(n)
p|un

1 �
∑

p∈[y,x1/2]

(
x

pTu(p)
+ 1

)
� x

∑
p∈[y,x1/2]

1
pTu(p)

+ O(x1/2).

Using Lemma 2.1 for any γ ∈ (0, 1) and the trivial estimate Tu(p) 	 log p, we derive

∑
p∈[z,2z]

1
pTu(p)

� 1
z

∑
p∈[z,2z]

1
Tu(p)

� 1
z

(
zkγ

(log z)2
+

z1−γ

log z

)
.

Taking γ to satisfy
zγ = (z log z)1/(k+1),

we obtain
1
z

∑
p∈[z,2z]

1
pTu(p)

� z−1/(k+1)(log z)−(k+2)/(k+1).

Summing over dyadic intervals, we now have
∑

p∈[y,x1/2]

1
pTu(p)

� y−1/(k+1)(log y)−(k+2)/(k+1).

Therefore,
N2 � xy−1/(k+1)(log y)−(k+2)/(k+1) + x1/2. (7.5)

Taking, for example, y := (log x)k+1, we obtain from (7.4) and (7.5) the estimate

#Nu,g(x) � N1 + N2 � x log log x

log x
. (7.6)

This estimate is slightly worse than the estimate in Theorem 1.1 and it is certainly an
interesting question if the gap can be closed. However, the method of proof of Theorem 1.1
does not apply due to the possible existence of large prime divisors of g(n).
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