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Perfect shuffles

Suppose you take a deck of 52 cards, cut it in half, and

perfectly shuffle it (with the bottom card staying on the

bottom).

If this is done 8 times, the deck returns to the order it was in

before the first shuffle.

But, if you include the 2 jokers, so there are 54 cards, then it

takes 52 shuffles, while a deck of 50 cards takes 21 shuffles.

What’s going on?
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For an odd number n, let l(n) = l2(n) denote the mutliplicative

order of 2 in (Z/nZ)×. Note that

l(51) = 8, l(53) = 52, l(49) = 21.

In fact, it is not hard to prove that the number of perfect

shuffles to return a deck of 2n cards to it’s initial order is

l(2n − 1).

(Number the cards 0 to 2n − 1, with 0 the bottom card. Then

a perfect shuffle takes a card in position i and sends it to

2i mod (2n − 1). )
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This function l(n) (= the multiplicative order of 2 mod n)

appears to be very erratic and difficult to get hold of. It is of

interest not only in card shuffling, but in computing the periods

of certain pseudo-random number generators, and in other

cryptographic contexts.

Further, as a basic and ubiquitous number-theoretic function it

seems interesting to study l(n), and more generally la(n) (the

order of a in (Z/nZ)×) from a statistical viewpoint.

What are extreme values for la(n)?

What is it normally?

What is it on average?
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First, some number theory notation:

ϕ(n) = #(Z/nZ)×

Thus, la(n) | ϕ(n) when (a, n) = 1.

More notation:

We say f(x) ∼ g(x) as x → ∞ if limx→+∞ f(x)/g(x) = 1.

π(x) is the number of primes in [1, x].

The Prime Number Theorem: π(x) ∼ x/ log x as x → ∞.
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One elementary result that goes back to Gauss and Carmichael

is that la(n) | λ(n).

Here λ(n) = max(a,n)=1 la(n) is the order of the largest cyclic

subgroup in (Z/nZ)×. We have

λ([m, n]) = [λ(m), λ(n)], λ(pα) = ϕ(pα) = pα−1(p − 1)

for odd primes p and pα = 2 or 4, and λ(2α) = 2α−2 for α ≥ 3.

So the largest la(n) can be is λ(n). How often does this occur?
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If la(n) = λ(n), we say that a is a primitive root for n, thus

generalizing the usual terminology when n is prime.

Let R(n) denote the number of primitive roots for n in

(Z/nZ)×. When n = p is prime we have R(p) = ϕ(p − 1), and it

is not hard to prove (Stephens) that

∑

p≤x

R(p)

p
∼ Aπ(x), x → ∞,

where

A =
∏

p
(1 − 1/p(p − 1)) = 0.3739558136 . . .

is known as Artin’s constant.
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Let Pa(x) denote the number of primes p ≤ x for which a is a

primitive root for p. It is thus perhaps natural to conjecture

that

Pa(x) ∼ Aπ(x), x → ∞.

However, this is clearly wrong! For example, take a = 0, a = 1,

a = 4, more generally, a = �, or a = −1. Then Pa(x) ≤ 2 for all

x. So the “correct” conjecture is that for a 6= −1, �, there is a

positive number Aa with Pa(x) ∼ Aaπ(x). (The need to have

the constant vary with a comes from algebraic number theory,

the case when a is a cube, and similar.)

A weak form of this was first conjectured by Gauss, but it is

now known as Artin’s conjecture. It was proved by Hooley

under the assumption of the Riemann hypothesis for algebraic

number fields of the form Q(a1/n, ζn).
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Exciting corollary! If this GRH holds, then for infinitely many

deck sizes 2n, the number of perfect shuffles to return it to its

order before shuffling is 2n − 2.

Another! If this GRH holds, then for infinitely many primes p,

the length of the period for the decimal of 1/p is p − 1.
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It should be easy to formulate a version of Artin’s conjecture

for composites, right? Namely, prove that

∑

n≤x

R(n)

n
∼ Bx, x → ∞

for some constant B > 0, and then posit that for each number

a outside of some exceptional set there is a positive number Ba

with Na(x) ∼ Bax, where Na(x) is the number of n ≤ x for

which a is a primitive root (that is, la(n) = λ(n)).

OK, to get started, we should work out a simple formula for

R(n). It is not so hard: For each prime q | λ(n), let vq be the

exact exponent on q in the factorization of λ(n), and let ∆q(n)

be the q-rank of

(

(Z/nZ)×
)qvq−1

(subgroup of qvq−1 powers).
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With the numbers ∆q(n) we can write down a formula for R(n):

Li, Martin: R(n) = ϕ(n)
∏

q|λ(n)(1 − q−∆q(n)).

But what about R(x) :=
∑

n≤x R(n)/n? Recall our plan is to

show that R(x) ∼ Bx. But . . .

Li: The function R(x) is chaotic. That is,

lim sup
x→∞

R(x)/x > 0, lim inf
x→∞ R(x)/x = 0.

What’s going on?
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Consider a game where you have a chance to win a quarter:

I give you n quarters, you flip them all, and return to me all

that land tails.

You repeat this over and over, but if you get down to a single

quarter, you get to keep it. (So, for example, if you have 2

quarters at one point, you flip them, and they both come up

tails, you lose.)

What is the probability of winning as n → ∞? If you work it out

numerically it appears to converge to some positive number,

but in fact, it does not converge, it oscillates slightly. (If n

tends to infinity through a subsequence where {logn/ log 2}
converges to θ, then the probability converges to some f(θ).)
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So, what does this have to do with primitive roots? Well, in

the formula for R(n) there’s a factor 1 − 2−∆2(n), so it is of

interest to know how frequently ∆2(n) = 1, how frequently it is

2, etc. Analogous to quarters are the prime powers qb in the

prime factorization of n. The quarters which turn tails on the

first round are those qb with q ≡ 3 (mod 4) (and when q = 2: if

λ(2b) = 2). The ones that turn tails on the next round are

those with q ≡ 5 (mod 8), etc. The number of quarters

remaining on the final round corresponds to ∆2(n). Since n

has usually about log logn prime divisors, we should get one

situation for ∆2(n) if say log logn is close to a power of 2, and

another say, if it is close to a number 2k+1/2.

12



This kind of game is repeated for each small prime, not just 2.

If log logn is well approximated by powers of each small prime,

we get one kind of behavior, and if it is far from being well

approximated by small prime powers, we get another kind of

behavior.

Thus, the oscillation. But it is very gentle. We know (Li) that

R(x) � x/ log log log x.

Using these kinds of ideas, Li showed that

lim inf
x→∞ Na(x)/x = 0

for any fixed number a. (Na(x) is the number of n ≤ x coprime

to a with la(n) = λ(n).)
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And assuming GRH, Li, P showed that for a outside of an

exceptional set,

lim sup
a→∞

Na(x)/x > 0.

(For a exceptional, Na(x) = o(x).) In a new result, Li, P showed

unconditionally that for y ≥ exp((2 + ε)
√

log x log log x), we have

∑

1≤a≤y

Na(x) ∼ yR(x).

Long ago, Stephens had a similar unconditional result for Pa(x).

Now we turn to the order function la(n) normally and on

average.
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For λ, we do have results about it’s normal and average order,

and they are a far cry from a possible first guess, the normal

and average orders of ϕ.

Erdős, P, Schmutz: On a set of asymptotic density 1,

λ(n) = n/(logn)log log logn+C+o(1)

for a certain explicit positive constant C.

This should be compared with

Schoenberg: For each real number u ∈ [0,1] let δ(u) denote the

asymptotic density of the integers n with ϕ(n) ≤ un. Then δ(u)

exists and the function δ is continuous and strictly increasing

on [0,1].
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Erdős, P, Schmutz: As x → ∞,

1

x

∑

n≤x

λ(n) =
x

log x
exp

(

(D + o(1)) log log x

log log log x

)

for a certain explicit positive constant D.

This should be compared with the classical result that

1

x

∑

n≤x

ϕ(n) ∼ cx as x → ∞,

where c = 1/2ζ(2) = 3/π2.

16



Further, assuming GRH, most n coprime to a have λ(n)/la(n)

small. (Results of Li, Kurlberg, and Li & P.)

Thus, one has

la(n) = n/(logn)log log logn+C+o(1)

for almost all n coprime to a.

Clearly the average order of λ(n), which is of greater

magnitude than n/ logn, is much larger than the normal order,

so the average is determined by a thin set of numbers with

abnormally large values of λ. Thus, it is unclear what is

happening with the average order of la(n).
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After some numerical experiments, V. I. Arnold recently

concluded that on average la(n) is Can/ logn, and he gave a

heuristic argument for this based on the physical principle of

turbulence. This is in the paper

Number-theoretical turbulence in Fermat–Euler arithmetics and

large Young diagrams geometry statistics, Journal of Fluid

Mechanics 7 (2005), S4–S50.

It also was the subject of one the Chern Lectures he gave at

UC Berkeley in 2007.
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Arnold writes in the abstract:

“Many stochastic phenomena in deterministic mathematics had

been discovered recently by the experimental way, imitating

Kolmogorov’s semi-empirical methods of discovery of the

turbulence laws. From the deductive mathematics point of view

most of these results are not theorems, being only descriptions

of several millions of particular observations. However, I hope

that they are even more important than the formal deductions

from the formal axioms, providing new points of view on

difficult problems where no other approaches are that efficient.”

And he asserts that his expression Can/ logn for the average

order of la(n) is in fact supported by billions of experiments.
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I think we should be a bit suspicious!

First, iterated logarithms grow so slowly that they are difficult

to detect numerically.

Second, Arnold did not seem to investigate any of the literature

dealing with la(n). In fact, there are interesting papers on the

subject going back to Romanoff (who proved that the sum of

1/(nla(n)) for n coprime to a is convergent), with later papers

by Erdős, P, Pappalardi, Li, Kurlberg, Murty, Rosen, Silverman,

Saidak, Moree, Luca, Shparlinski, and others.
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But. . .

It’s good to have outsiders investigate a field, and if they were

expected to first read the literature thoroughly, it might

dampen the fresh insight they might bring.

And, his conjecture that the average order of l(n) (= l2(n))

grows like n/ logn is supported on one side by Hooley’s

GRH-conditional proof of Artin’s conjecture. Thus, assuming

the GRH, a positive proportion of primes p have l(p) = p − 1, so

that just the contribution of primes to the sum of l(n) gives an

average order that is � n/ logn. And perhaps composites do

not contribute too much.

However. . .
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Shparlinski (2007): Let |a| > 1. Assuming the GRH, there is

some Ca > 0 with

1

x

∑

n≤x
(a,n)=1

la(n) ≥ x

log x
exp

(

Ca(log log log x)3/2
)

.

(On some dynamical systems in finite fields and residue rings,

Discrete and continuous dynamical systems, Series A 17

(2007), 901–917.)

And he suggests that with more work, the exponent “3/2”

might possibly be replaced with “2”.
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Balazard, Kurlberg, P: Let |a| > 1. Assuming the GRH,

1

x

∑

n≤x
(a,n)=1

la(n) =
x

log x
exp

(

(D + o(1)) log log x

log log log x

)

.

Here “D” is the same constant that appears in the average

order of λ(n), namely

D = e−γ
∏

p

(

1 − 1

(p − 1)2(p + 1)

)

= 0.3453720641 . . . .

In particular, the upper bound in the theorem holds

unconditionally.
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The proof is a bit intense, borrowing heavily from the structure

of the proof in Erdős, P, & Schmutz of the corresponding

result for λ(n).

However, the following lemma is also used:

Kurlberg & P (2005): For 1 ≤ y ≤ logx/ log log x

#{p ≤ x : la(p) < p/y} = O

(

π(x)

y

)

.

This result follows essentially from the the Hooley GRH

conditional proof of Artin’s primitive-root conjecture.

(Pappalardi (1996) had this result in a wider range for y, but it

has been retracted. Kurlberg (2003) had this result in the

range y ≤ (log x)1−ε.)
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Probably better suited for presentation in a talk is a proof of

the following result from Balazard, Kurlberg, & P:

Assume the GRH. The average order of l(p) is 159
160cp, where

c =
∏

p

(

1 − p

p3 − 1

)

.

(Recall that l(p) = l2(p), the order of 2 in (Z/pZ)×.) Note that
159
160c = 0.57236022 . . . , so that on average, l(p) > 4

7p.

Luca (2002) has shown that the average order of an element of

(Z/pZ)× is cp on average. (Two levels of averaging.)
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We are to prove that

∑

p≤x

l(p) ∼ 159

320
cxπ(x), x → ∞.

For an odd prime p, let i(p) = (p − 1)/l(p), namely the index of
the subgroup 〈2〉 in (Z/pZ)×. Let z be some parameter tending
to infinity that we will specify later. We have

∑

p≤x

l(p) =
∑

p≤x
i(p)≤z

l(p) +
∑

p≤x
i(p)>z

l(p) = S + T,

say. Further, if z ≤ log x/ log log x, then the Kurlberg–P lemma
implies

T = O

(

x

z
· π(x)

z

)

,

which is o(xπ(x)) provided z → ∞.
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Now, for the main term S we might use known results for the

distribution of primes p where i(p) is fixed at some number, but

it seems simpler to use an inclusion–exclusion:

S =
∑

p≤x
i(p)≤z

(p − 1)
∑

uv|i(p)

µ(v)

u
.

Here µ is the Möbius function. It encodes the principle of

inclusion-exclusion from combinatorics and is defined:

µ(v) = 0 if v is not squarefree and

µ(v) = (−1)k when v is squarefree and has k prime factors.

We write S = U − V , where in U we drop the condition i(p) ≤ z,

but assume uv ≤ z, while in V we assume that i(p) > z and

uv ≤ z.
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We have

V =
∑

p≤x
i(p)>z

(p − 1)
∑

uv|i(p)
uv≤z

µ(v)

u
.

We majorize trivially by replacing µ(v) with 1. For z < i(p) < z2,

the number of choices of v is zo(1), so the inner sum is at most

zo(1), and the contribution to V is at most xπ(x)/z1−o(1).

When i(p) ≥ z2, the number of choices of v is at most z/u, so

the inner sum is O(z) and the contribution to V is at most

O(xπ(x)/z) provided z ≤ (log x/ log log x)1/2.
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This leaves the main term

U =
∑

p≤x

(p − 1)
∑

uv|i(p)
uv≤z

µ(v)

u
=

∑

uv≤z

µ(v)

u

∑

p≤x
uv|i(p)

(p − 1).

For a given value of uv ≤ z, we can compute the inner sum by

partial summation and a GRH-conditional result in Hooley,

getting

xπ(x)

2uvϕ(uv)
+ O

(

xπ(x)

log x

)

if 8 - uv and twice this if 8 | uv. (If z ≤ (log x)1/7, say, we have

this unconditionally, but we needed the GRH to estimate the

error term V .)
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Thus, the main term is

U =
1

2
xπ(x)













∑

uv≤z

µ(v)

u2vϕ(uv)
+

∑

uv≤z
8|uv

µ(v)

u2vϕ(uv)













+O

(

xπ(x)z log z

logx

)

.

So we see that a convenient choice of z is (log x/ log logx)1/2.

For the main term, we consider the expressions as infinite

sums, estimate the errors in truncation, and then rewrite the

infinite sums as Euler products. We get:

1

π(x)

∑

2<p≤x

l(p) =
159

320
cx + O

(

x

(log x)1/2−ε

)

.

�
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V. I. Arnold, Number-theoretical turbulence in Fermat–Euler

arithmetics and large Young diagrams geometry statistics, J.

Fluid Mechanics 7 (2005), S4–S50.

M. Balazard, P. Kurlberg, and C. Pomerance, in progress.

P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda

function, Acta Arith. 58 (1991), 363–385.

C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225

(1967), 209–220.

S. Li and C. Pomerance, On the Artin–Carmichael primitive

root problem on average, Mathematika, to appear.
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