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Perfect shuffles

Suppose you take a deck of 52 cards, cut it in half, and

perfectly shuffle it (with the bottom card staying on the

bottom).

If this is done 8 times, the deck returns to the order it was in

before the first shuffle.

But, if you include the 2 jokers, so there are 54 cards, then it

takes 52 shuffles, while a deck of 50 cards takes 21 shuffles.

What’s going on?
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Let Shuf(2k) denote the number of perfect shuffles that will

return a deck of 2k cards to the order it was in before shuffling.

So, Shuf(50) = 21, Shuf(52) = 8, Shuf(54) = 52.

When a small change in input can produce a large change in

output, we are looking at a chaotic function. It appears that

Shuf is chaotic.
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Here’s another example. Consider the length of the repeating
period for the decimal for 1/n. Let this be denoted Peri(n), so
for example, Peri(3) = 1, Peri(7) = 6. Here are some values for
odd numbers starting above 100:

Peri(101) = 4

Peri(103) = 34

Peri(105) = 6

Peri(107) = 53

Peri(109) = 108

Peri(111) = 3

Peri(113) = 112
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For a positive integer n coprime to an integer a, let la(n)
denote the multiplicative order of a in (Z/nZ)×.

As I’m sure all here know, when n is coprime to 10, we have
Peri(n) = l10(n).

There is a connection here too with Shuf(2k).

Note that

l2(49) = 21, l2(51) = 8, l2(53) = 52.

In fact, it is not hard to prove that Shuf(2k) = l2(2k − 1).

(Number the cards 0 to 2k − 1, with 0 the top card. Then a
perfect shuffle takes a card in position i and sends it to
2i mod (2k − 1). )
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We see that the order function la(n) is chaotic, thus explaining
the title of this lecture.

Trying to understand the order function has applications in
cryptography, for example in computing the periods of certain
pseudo-random number generators. And of course the RSA
cryptosystem relies for its security on the difficulty in
computing the order function.

Further, as a basic and ubiquitous number-theoretic function it
seems interesting to study la(n) from a statistical viewpoint.

What are extreme values for la(n)?

What is it normally?

What is it on average?
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In fact analytic number theory is quite well acquainted with
chaotic functions. Take the divisor function d(n), which counts
the number of positive divisors of n. For example,

d(2309) = 2, d(2310) = 32, d(2311) = 2.

This behavior is tamed by looking at d(n) on average. In fact

1

x

∑
n≤x

d(n) = logx+ c+ o(1), as x→∞.

It is easy to investigate the sum, since we can replace d(n) with∑
d|n

1,

and then interchange the order of summation. (To get the
constant and a reasonable error estimate, one uses the
symmetry d↔ n/d.)
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Another example of how an elementary number-theoretic

function may be studied statistically: ω(n), the number of

divisors of n that are prime. It is more gentle than d(n), for

example

ω(2309) = 1, ω(2310) = 5, ω(2311) = 1.

It is easy to show that

1

x

∑
n≤x

ω(n) = log logx+ c+ o(1).

Thus, the average order of ω(n) is log logn. This is also the

“normal order”: for each ε > 0, the set of integers n with

(1− ε) log logn < ω(n) < (1 + ε) log logn

has asymptotic density 1 (Hardy & Ramanujan, Turán).
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Talk about Arithmetic Statistics, we even have the bell curve

showing up. After Erdős & Kac, we know that for each real

number u, the asymptotic density of the set of integers n with

ω(n) ≤ log logn+ u
√

log logn

is
1√
2π

∫ u
−∞

e−t
2/2 dt,

the Gaussian normal distribution.

(Erdős & Kac did not remark: ‘Einstein says that God does not

play dice with the universe. Maybe so, but something is going

on with the primes.’)
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The work on the normal order of ω(n) and the average order of

d(n) shows that d(n) is for most values of n about (logn)log 2

but on average it is about logn. That is, what is normal is far

from what is average.

There are other statistical surprises in elementary number

theory. For example, on average, a number n has log 2 divisors

between 1
2
√
n and

√
n, but almost all numbers n have no

divisors in this interval.

Here is another: We know that the number of integers n with

ϕ(n) ≤ x is cx+ o(x) as x→∞, where c = ζ(2)ζ(3)/ζ(6). It is

also known that under assumption of the Elliott–Halberstam

conjecture, there is no power-saving error term in this result.
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How does one begin to study la(n)?

13



Since ϕ(n) = #(Z/nZ)×, we have la(n) | ϕ(n).

However, we can do better: An elementary result that goes

back to Gauss and Carmichael is that la(n) | λ(n).

Here λ(n) = max(a,n)=1 la(n), the order of the largest cyclic

subgroup in (Z/nZ)×. We have

λ([m,n]) = [λ(m), λ(n)], λ(pj) = ϕ(pj) = pj−1(p− 1)

for odd primes p and pj = 2 or 4, and λ(2j) = 2j−2 for j ≥ 3.

So the largest la(n) can be is λ(n). How often does this occur?
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If la(n) = λ(n), we say that a is a primitive root for n, thus

generalizing the usual terminology when (Z/nZ)× is cyclic.

Let R(n) denote the number of primitive roots for n in

(Z/nZ)×. When n = p is prime we have R(p) = ϕ(p− 1), and it

is not hard to prove (Stephens) that

∑
p≤x

R(p)

p
=

∑
p≤x

ϕ(p− 1)

p
∼ Aπ(x), x→∞,

where

A =
∏
p

(
1−

1

p(p− 1)

)
= 0.3739558136 . . .

is known as Artin’s constant.
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Here is a proof. Changing the summand ϕ(p− 1)/p to

ϕ(p−1)/(p−1) changes the sum by less than the sum of 1/p for

p ≤ x, which is negligible compared with π(x). Further, we can

write ϕ(p− 1)/(p− 1) as the sum of µ(d)/d over d | p− 1. Thus,

∑
p≤x

ϕ(p− 1)

p− 1
=

∑
p≤x

∑
d|p−1

µ(d)

d
=

∑
d≤x

µ(d)

d
π(x; d,1).

We would like to replace π(x; d,1) with π(x)/ϕ(d), but this is

not known to be a good approximation for all d in this vast

range, not even on average. We do know it uniformly (and

effectively) in the range d ≤ (logx)3/2 and this is sufficient

since we can replace the remaining terms with the upper bound

x/d2 whose sum is O(x/(logx)3/2).
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Thus, taking into account the various errors introduced, we

have ∑
p≤x

ϕ(p− 1)

p
= π(x)

∞∑
d=1

µ(d)

dϕ(d)
+O

(
x

(logx)3/2

)
,

and it remains to note that
∞∑
d=1

µ(d)

dϕ(d)
=
∏
p

(
1−

1

p(p− 1)

)
= A.
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Let Pa(x) denote the number of primes p ≤ x for which a is a
primitive root for p. It is perhaps natural to conjecture that the
particular residue a is just as likely to be a primitive root for p
as is a random residue, that is,

Pa(x) ∼ Aπ(x), x→∞.
However, this is clearly wrong! For example, take a = 0, a = 1,
a = 4, more generally, a = �, or a = −1. Then Pa(x) ≤ 2 for all
x. So the “correct” conjecture is that for a 6= −1,�, there is a
positive number Aa with Pa(x) ∼ Aaπ(x). (The need to have
the constant vary with a comes from algebraic number theory,
the case when a is a cube, and similar.)

A weak form of this was first conjectured by Gauss, but it is
now known as Artin’s conjecture. It was proved by Hooley
under the assumption of the Riemann hypothesis for algebraic
number fields of the form Q(a1/n, ζn).

18



Corollary. If this GRH holds, then for infinitely many deck

sizes 2k, the number of perfect shuffles to return it to its order

before shuffling is 2k − 2.

Corollary. If this GRH holds, then for infinitely many primes p,

the length of the period for the decimal of 1/p is p− 1.

19



Carl Friedrich Gauss Emil Artin

20



It should be easy to formulate a version of Artin’s conjecture
for composites, right? Namely, prove that∑

n≤x

R(n)

n
∼ Bx, x→∞

for some constant B > 0, and then posit that for each number
a outside of some exceptional set there is a positive number Ba
with Na(x) ∼ Bax, where Na(x) is the number of n ≤ x for
which a is a primitive root (that is, la(n) = λ(n)).

OK, to get started, we should work out a formula for R(n).
Often it is ϕ(ϕ(n)), but not always. For each prime q | λ(n), let
eq be the exponent on q in the factorization of λ(n), and let
∆q(n) be the q-rank of (

(Z/nZ)×
)λ(n)/q

.
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So, ∆q(n) is the number of factors Cqeq in (Z/nZ)×. With the

numbers ∆q(n) we can write down a formula for R(n):

Li, Martin: R(n) = ϕ(n)
∏

q|λ(n)

(
1− q−∆q(n)

)
.

But what about R(x) :=
∑
n≤xR(n)/n? Recall our plan is to

show that R(x) ∼ Bx. But . . .

Li: The function R(x) oscillates. In fact,

lim sup
x→∞

R(x)/x > 0, lim inf
x→∞ R(x)/x = 0.

What’s going on?
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Consider a game where you have a chance to win a quarter:

I give you n quarters, you flip them all, and return to me all

that land tails.

You repeat this over and over, but if you get down to a single

quarter, you get to keep it. (So, for example, if you have 2

quarters at one point, you flip them, and they both come up

tails, you lose.)

What is the probability of winning as n→∞? If you work it out

numerically it appears to converge to some positive number,

but in fact, it does not converge, it oscillates slightly. (If n

tends to infinity through a subsequence where {logn/ log 2}
converges to θ, then the probability converges to some f(θ).)

24



So, what does this have to do with primitive roots? Well, in

the formula for R(n) there’s a factor 1− 2−∆2(n), so it is of

interest to know how frequently ∆2(n) = 1, how frequently it is

2, etc. Analogous to quarters are the prime powers qb in the

prime factorization of n. The quarters which turn tails on the

first round are those qb with q ≡ 3 (mod 4) (and when q = 2: if

λ(2b) = 2). The ones that turn tails on the next round are

those with q ≡ 5 (mod 8), etc. The number of quarters

remaining on the final round corresponds to ∆2(n). Since n

has usually about log logn prime divisors, we should get one

situation for ∆2(n) if log logn is close to a power of 2, and

another if it is close to a number 2k+1/2.
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This kind of game is repeated for each small prime, not just 2.

If log logn is well approximated by powers of each small prime,

we get one kind of behavior, and if it is far from being well

approximated by small prime powers, we get another kind of

behavior.

Thus, the oscillation. But it is very gentle. We know (Li) that

R(x)� x/ log log logx.

Using these kinds of ideas, Li showed that

lim inf
x→∞ Na(x)/x = 0

for any fixed number a. (Na(x) is the number of n ≤ x coprime

to a with la(n) = λ(n).)

26



And assuming GRH, Li, P showed that for a outside of an

exceptional set,

lim sup
a→∞

Na(x)/x > 0.

(For a exceptional, Na(x) = o(x).) In a new result, Li, P showed

unconditionally that for y ≥ exp((2 + ε)
√

logx log logx), we have∑
1≤a≤y

Na(x) ∼ yR(x).

Long ago, Stephens had a similar unconditional result for Pa(x).

Now we turn to the order function la(n) normally and on

average.
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For λ, we do have results about it’s normal and average order,

and they are a far cry from a possible first guess, the normal

and average orders of ϕ.

Erdős, P, Schmutz: On a set of asymptotic density 1,

λ(n) = n/(logn)log log logn+C+o(1)

for a certain explicit positive constant C.

This should be compared with

Schoenberg: For each real number u ∈ [0,1] let δ(u) denote the

asymptotic density of the integers n with ϕ(n) ≤ un. Then δ(u)

exists and the function δ is continuous and strictly increasing

on [0,1].
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Erdős, P, Schmutz: As x→∞,

1

x

∑
n≤x

λ(n) =
x

logx
exp

(
(D + o(1)) log logx

log log logx

)

for a certain explicit positive constant D.

This should be compared with the classical result that

1

x

∑
n≤x

ϕ(n) ∼ cx as x→∞,

where c = 1/(2ζ(2)) = 3/π2.
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Further, assuming GRH, most n coprime to a have λ(n)/la(n)

small. (Results of Li, Kurlberg, and Li & P.)

Thus, one has

la(n) = n/(logn)log log logn+C+o(1)

for almost all n coprime to a.

Clearly the average order of λ(n), which is of greater

magnitude than n/ logn, is much larger than the normal order,

so the average is determined by a thin set of numbers with

abnormally large values of λ. Thus, it is unclear what is

happening with the average order of la(n).
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After some numerical experiments, V. I. Arnold recently

concluded that on average la(n) is Can/ logn, and he gave a

heuristic argument for this based on the physical principle of

turbulence. This is in the paper

Number-theoretical turbulence in Fermat–Euler arithmetics and

large Young diagrams geometry statistics, Journal of Fluid

Mechanics 7 (2005), S4–S50.

It seems to have been discussed in one of the Chern Lectures

he gave at UC Berkeley in 2007.
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Arnold writes in the abstract:

“Many stochastic phenomena in deterministic mathematics had

been discovered recently by the experimental way, imitating

Kolmogorov’s semi-empirical methods of discovery of the

turbulence laws. From the deductive mathematics point of view

most of these results are not theorems, being only descriptions

of several millions of particular observations. However, I hope

that they are even more important than the formal deductions

from the formal axioms, providing new points of view on

difficult problems where no other approaches are that efficient.”

And he asserts that his expression Can/ logn for the average

order of la(n) (in the case a = 2) is in fact supported by billions

of experiments.
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I think we should be a bit suspicious!

First, iterated logarithms grow so slowly that they are difficult

to detect numerically.

Second, Arnold did not seem to investigate any of the literature

dealing with la(n). In fact, there are interesting papers on the

subject going back to Romanoff (who proved that the sum of

1/(nla(n)) for n coprime to a is convergent), with later papers

by Erdős, P, Pappalardi, Li, Kurlberg, Murty, Rosen, Silverman,

Saidak, Moree, Luca, Shparlinski, and others.
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But. . .

It’s good to have outsiders investigate a field, and if they were

expected to first read the literature thoroughly, it might

dampen the fresh insight they might bring.

And, his conjecture that the average order of l2(n) grows like

n/ logn is supported on one side by Hooley’s GRH-conditional

proof of Artin’s conjecture. Thus, assuming the GRH, a

positive proportion of primes p have l2(p) = p− 1, so that just

the contribution of primes to the sum of l2(n) gives an average

order that is � n/ logn. And perhaps composites do not

contribute too much.

However. . .
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Shparlinski (2007): Let |a| > 1. Assuming the GRH, there is

some Ca > 0 with

1

x

∑
n≤x

(a,n)=1

la(n) ≥
x

logx
exp

(
Ca(log log logx)3/2

)
.

(On some dynamical systems in finite fields and residue rings,

Discrete and continuous dynamical systems, Series A 17

(2007), 901–917.)

And he suggests that with more work, the exponent “3/2”

might possibly be replaced with “2”.
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Kurlberg and P: Let |a| > 1. Assuming the GRH,

1

x

∑
n≤x

(a,n)=1

la(n) =
x

logx
exp

(
(D + o(1)) log logx

log log logx

)
.

Here “D” is the same constant that appears in the average

order of λ(n), namely

D = e−γ
∏
p

(
1−

1

(p− 1)2(p+ 1)

)
= 0.3453720641 . . . .

In particular, the upper bound in the theorem holds

unconditionally.
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The proof is a bit intense, borrowing heavily from the structure
of the proof in Erdős, P, & Schmutz of the corresponding
result for λ(n).

However, the following lemma is also used:

Kurlberg & P (2005): For 1 ≤ y ≤ logx/ log logx

#{p ≤ x : la(p) < p/y} = O

(
π(x)

y

)
.

This result follows essentially from the the Hooley GRH
conditional proof of Artin’s primitive-root conjecture.
(Pappalardi (1996) had this result in a wider range for y, but it
has been retracted. Kurlberg (2003) had this result in the
range y ≤ (logx)1−ε.)
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We also have begun to consider the somewhat easier problem

that perhaps has not been considered before: What can one

say about la(p) on average over primes p?

For example, take a = 2; then we have the following result:

Assume the GRH. The average order of l2(p) is 159
160cp, where

c =
∏
p

(
1−

p

p3 − 1

)
.

Note that 159
160c = 0.57236022 . . . , so that on average,

l2(p) > 4
7p.
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Luca (2002) has shown that the average order of an element in

the group (Z/pZ)× is cp on average. (Two levels of averaging.)

That is, he shows that

∑
p≤x

p−1∑
a=1

la(p) ∼
1

3
cx2π(x), x→∞.

Hu (2010) has worked out a similar result for orders in finite

fields of a given fixed degree over their prime fields.
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I conclude with a proof of Luca’s theorem.

Let f(p) =
p−1∑
a=1

la(p), so that

f(p) =
∑
d|p−1

dϕ(d) =
∑
d|p−1

ϕ(d2) =
∑
d|p−1

ϕ

((
p− 1

d

)2
)
.

Thus,

S :=
∑
p≤x

f(p) =
∑
d≤x

∑
p≤x
d|p−1

ϕ

((
p− 1

d

)2
)
.

The contribution to S from values of d > x1/5 is at most∑
d>x1/5

x

d
·
x2

d2
= O(x2.6).
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The remaining part of S is∑
d≤x1/5

∑
p≤x
d|p−1

(
p− 1

d

)2 ∑
e|(p−1)/d

µ(e)

e
.

Using that no integer below x has more than xε divisors, the
contribution here when e > x1/5 is at most∑

d≤x1/5

x

d
·
x2

d2
·
xε

x1/5
= O(x2.8+ε).

Thus, we are left to estimate∑
d,e≤x1/5

∑
p≤x
de|p−1

(p− 1)2µ(e)

d2e
.

The sum on p may be estimated via the Bombieri–Vinogradov
theorem, and so we get,
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for any fixed number A,

S = li(x3)
∑

d,e≤x1/5

µ(e)

d2eϕ(de)
+O(x3/(logx)A).

The remaining sum may be extended over all d, e, and note that

∑
d,e

µ(e)

d2eϕ(de)
=
∑
d,e

µ(e)e

d2e2ϕ(de)
=
∑
n

1

n2ϕ(n)

∑
e|n

µ(e)e.

The inner sum is (−1)ω(n)rad(n)ϕ(n)/n, so the sum becomes

∑
n

(−1)ω(n)rad(n)

n3
=
∏
p

(
1−

p

p3 − 1

)
= c.

We conclude that S = c li(x3) +O(x3/(logx)A), proving the

theorem.
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