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Perfect shuffles

Suppose you take a deck of 52 cards, cut it in half, and

perfectly shuffle it (with the bottom card staying on the

bottom and the top card staying on the top).

If this is done 8 times, the deck returns to the order it was in

before the first shuffle.

But, if you include the 2 jokers, so there are 54 cards, then it

takes 52 shuffles, while a deck of 50 cards takes 21 shuffles.

Do you believe me? And what’s going on?
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Persi Diaconis
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Lets try it out for smaller decks. Say 4 cards.

Number the 4 positions in the deck 0, 1, 2, 3, where 0 is the

postion for the top card, 1 is the position for the second card,

and so on. (This is the way computer scientists count, and the

way floors are numbered in Europe.)

And here’s one shuffle:

0 0
1 0 2 2
2 1 3 1
3 3
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So doing one perfect shuffle on a deck of 4 cards just reverses

the two middle cards, so doing it twice would return the deck

to its original order.

Lets try 6 cards. Here are two shuffles:

0 0 0
1 0 3 3 0 4 4
2 1 4 1 3 2 3
3 2 5 4 1 5 2
4 2 1
5 5 5

Two shuffles reverse the order of the middle 4 cards, so four

shuffles would return this deck to its starting order.
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Lets try 8 cards:

0 0 0 0
1 0 4 4 0 2 2 0 1 1
2 1 5 1 4 6 4 2 3 2
3 2 6 5 1 3 6 4 5 3
4 3 7 2 5 7 1 6 7 4
5 6 3 5
6 3 5 6
7 7 7 7

So, with 8 cards, it takes 3 shuffles.

5



And now lets try to see what’s happening with 2n cards. Here’s

one shuffle:

0 0 n 0
1 1 n+ 1 n
2 2 n+ 2 1
3 3 n+ 3 n+ 1
4 4 n+ 4 2
... ... ... ...

2n− 2 n− 2 2n− 2 n− 1
2n− 1 n− 1 2n− 1 2n− 1

Is there some simple way to explain in a formula what happens

to the card in position i after one shuffle?
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0 0 n 0
1 1 n+ 1 n
2 2 n+ 2 1
3 3 n+ 3 n+ 1
4 4 n+ 4 2
... ... ... ...

2n− 2 n− 2 2n− 2 n− 1
2n− 1 n− 1 2n− 1 2n− 1

So, the card in position 0 goes to position 0, the card in
position 1 goes to position 2, and so on. For the first half the
card in position i goes to position 2i.

In the second half of the deck: The card in position n+ i goes
to position 2i+ 1, which we could write as 2(n+ i)− (2n− 1).
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Let S(i) be the position that a card in position i gets sent to

after one perfect shuffle. We have

S(i) =

2i, i < n

2i− (2n+ 1), n ≤ i ≤ 2n− 1

That is,

S(i) ≡ 2i (mod 2n− 1).

So, if we do two shuffles, we have

S(2)(i) = S(S(i)) ≡ 22i (mod 2n− 1)

and in general after k shuffles,

S(k)(i) ≡ 2ki (mod 2n− 1).
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We’re nearly there: We just need to find the least number k

with

2k ≡ 1 (mod 2n− 1).

9



What are the powers of 2 modulo 51? They are

2, 4, 8, 16, 32, 13, 26, 1,

so we have

28 ≡ 1 (mod 51)

and this explains the 8 perfect shuffles for a deck of 52 cards.

Here’s a question: Given a deck of size 2n are we sure there will

be some number of perfect shuffles to return it to its order?

That is, are we sure that there is some positive integer k with

2k ≡ 1 (mod 2n− 1) ?
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We know this from Lagrange, since 2 is in the multiplicative

group modulo n.

But we knew this a century earlier.

For a positive integer m, let ϕ(m) be the number of integers in

{1,2, . . . ,m} that are relatively prime to m. For example,

ϕ(3) = 2, ϕ(10) = 4, ϕ(51) = 32.

Euler: If the integer a is relatively prime to m, then

aϕ(m) ≡ 1 (mod m).
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Leonhard Euler
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We are looking at the order function. If a,m are relatively
prime, let la(m) denote the order of a modulo m, namely the
smallest positive integer k with
ak ≡ 1 (mod m).

From Euler, we know that la(m) exists, and in fact,
la(m) | ϕ(m).

Here are some values with a = 2, so that it corresponds to
shuffling:

l2(47) = 23, l2(49) = 21, l2(51) = 8, l2(53) = 52, . . .

l2(123) = 20, l2(125) = 100, l2(127) = 7, . . .

When a small change in input can produce a large change in
output, we are looking at a chaotic function. This function
l2(m) for odd numbers m appears to be chaotic.
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Here’s another example. Consider the length of the repeating
period for the decimal for 1/n. Let this be denoted Peri(n), so
for example, Peri(3) = 1, Peri(7) = 6. Here are some values for
numbers coprime to 10 starting above 100:

Peri(101) = 4

Peri(103) = 34

Peri(107) = 53

Peri(109) = 108

Peri(111) = 3

Peri(113) = 112
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For numbers m relatively prime to 10, Peri(m) = l10(m), so

again we have an order function, and again it is chaotic.
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We have seen in these examples that the order function la(n) is

chaotic, thus explaining the title of this lecture.

The order function has applications in cryptography and in

computing the periods of certain pseudo-random number

generators. In fact, the RSA cryptosystem relies for its security

on the difficulty in computing the order function.
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The Blum–Blum–Shub pseudo-random number generator:

Start with a positive integer m and a “seed” s, and let

xj = s2j mod m,

for j = 0,1, . . . . To go from xj to xj+1 one just squares, divides

by m, and takes the remainder. Often this is done with m the

product of two large prime numbers, and one creates a stream

of 0’s and 1’s based on whether xj is even or odd.

This is not really random, and in fact it will eventually be

periodic. Say the largest odd divisor of ls(m) is d. Then the

period length is l2(d).
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Here’s an exercise in case you’re interested:

Show that a black box that can compute multiplicative orders

of elements modulo n can be used to quickly read messages

encrypted in the RSA cryptosystem with modulus n.

In fact, show in addition that this black box can be used to

quickly find the prime factorization of n.
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Like computing ϕ(m), computing orders is essentially as hard

as computing the prime factorization of the modulus m, and we

know no way to routinely factor large numbers. That is, on

conventional computers.

Quantum computers theoretically can compute orders very

easily. Except it is not so easy to build a quantum computer!
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How might one “tame” a chaotic function? One way is to look

at it statistically. Lets take as an example, the function ω(n),

the number of primes that are divisors of n.

For example, ω(10) = 2, ω(11) = 1, ω(12) = 2, . . . . It does not

look very chaotic!
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However, there is chaos, just a more gentle variety. Consider

for example that

ω(2309) = 1, ω(2310) = 5, ω(2311) = 1.

It is easy to show that on average, ω(n) behaves like log logn.

That is,

1

x

∑
n≤x

ω(n) = log logx+ c+ o(1).

Thus, the average order of ω(n) is log logn. This is also the

“normal order”: for each ε > 0, the set of integers n with

(1− ε) log logn < ω(n) < (1 + ε) log logn

has asymptotic density 1 (Hardy & Ramanujan).
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G. H. Hardy S. Ramanujan
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Talk about statistics, we even have the bell curve showing up.

From Erdős & Kac, we know that for each real number u, the

asymptotic density of the set of integers n with

ω(n) ≤ log logn+ u
√

log logn

is
1√
2π

∫ u
−∞

e−t
2/2 dt,

the Gaussian normal distribution.

(Erdős & Kac did not remark: ‘Einstein says that God does not

play dice with the universe. Maybe so, but something is going

on with the primes.’)

23



Paul Erdős Mark Kac
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There is some famous work concerning la(p) where p is a prime

not dividing the integer a. We know that la(p) | ϕ(p) and that

ϕ(p) = p− 1. We also know that there are choices for a where

la(p) = p− 1.

For example, with a = 2 and p = 53. That’s why it takes a

whopping 52 perfect shuffles for a deck of 54 cards.
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Another example is with a = 10 and p = 109. That’s why the

length of the repeating period for the decimal expansion of

1/109 is a whopping 108.

Over two centuries ago, Gauss asked if this deal with the

decimal for 1/p occurred for infinitely many primes p. I.e., do

we have l10(p) = p− 1 for infinitely many primes p?
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In the mid twentieth century, Artin generalized Gauss’s

conjecture as follows.

Suppose that a is an integer which is not a square and not −1.

The Artin conjecture: There is a positive constant A(a) such

that asymptotically the proportion of primes p with

la(p) = p− 1 among all primes tends to A(a).

This is still not proven, nor even the weaker assertion that

there are infinitely many primes p with la(p) = p− 1. (This is

the Gauss conjecture when a = 10.)

However, the full Artin conjecture is known conditionally under

the assumption of the Generalized Riemann Hypothesis, a

theorem of Hooley.
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Carl Friedrich Gauss Emil Artin

28



One could ask about analogies for composite numbers. In

general, let λ(n) denote the largest possible value of la(n) as a

varies over numbers relatively prime to n. We always have

λ(n) | ϕ(n), and when n is prime, they are equal. But most of

the time λ(n) is much smaller than ϕ(n). For example,

ϕ(91) = 72 but λ(91) = 12.

A natural generalization of the Gauss–Artin problem:

For a fixed integer a outside of some sparse exceptional set, do

we have la(n) = λ(n) for a positive proportion B(a) of integers

n relatively prime to a?
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In recent work with Li, we showed that under the assumption

of the Generalized Riemann Hypothesis, the density of such

integers n does not exist: the limsup of the density is indeed a

positive number B(a), but the liminf is 0.
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Shuguang Li
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It is easy to come up with sets of numbers which do not have

an asymptotic density. For example, take the numbers with an

even number of digits.

It is a bit of a surprise though when oscillations occur in

non-artificial situations. Where does the oscillation come from

in considering the frequency of numbers n with la(n) = λ(n)?
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Consider a game where you have a chance to win a quarter:

I give you n quarters, you flip them all, and return to me all

that land tails.

You repeat this over and over, but if you get down to a single

quarter, you get to keep it. (So, for example, if you have 2

quarters at one point, you flip them, and they both come up

tails, you lose.)

What is the probability of winning as n→∞? If you work it out

numerically it appears to converge to some positive number,

but in fact, it does not converge, it oscillates slightly.
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When we’re faced with hard problems, sometimes a way of

getting some partial information is to consider the situation on

average. We discussed this already with ω(n), where we

understand this function on average, and we also understand it

normally.
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So, we could instead study the average values of la(p) as p

varies, and also the average value of la(n) as n varies. One too

could consider the average as a function of a or over both

variables. For example, Luca worked out the asymptotic

behavior of ∑
p≤x

p−1∑
a=1

la(p)

and Hu did the analogous thing for more general finite fields.
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Florian Luca Yilan Hu
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The question of the average order of la(n) for a fixed was

recently discussed by V. I. Arnold.

After some numerical experiments, he concluded that

1

x

∑
n≤x

la(n) ∼ Cax/ logx.

He gave a heuristic argument for this based on the physical

principle of turbulence. This is in the paper

Number-theoretical turbulence in Fermat–Euler arithmetics and

large Young diagrams geometry statistics, Journal of Fluid

Mechanics 7 (2005), S4–S50.
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Vladimir I. Arnold
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Arnold writes in the abstract:

“Many stochastic phenomena in deterministic mathematics had

been discovered recently by the experimental way, imitating

Kolmogorov’s semi-empirical methods of discovery of the

turbulence laws. From the deductive mathematics point of view

most of these results are not theorems, being only descriptions

of several millions of particular observations. However, I hope

that they are even more important than the formal deductions

from the formal axioms, providing new points of view on

difficult problems where no other approaches are that efficient.”

And he says that his conjecture is supported by billions of

experiments.
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I think we should be a bit suspicious!

First, even billions of experiments may not be enough to tease

out extra factors that may grow more slowly than logx.

Second, Arnold did not seem to investigate any of the literature

dealing with la(n). In fact, there are interesting papers on the

subject going back to Romanoff (who proved that the sum of

1/(nla(n)) for n coprime to a is convergent), with later papers

by Erdős, P, Pappalardi, Li, Kurlberg, Murty, Rosen, Silverman,

Saidak, Moree, Luca, Shparlinski, and others.

In addition he seemed to be unaware of work done on λ(n).
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For la(n) we could ask first the easier question: What is the

average value of λ(n)? (Recall that we always have la(n) | λ(n)

and often they are equal.)

What this question means is: How does

1

x

∑
n≤x

λ(n)

behave as x→∞ ?

Erdős, P, Schmutz: As x→∞,

1

x

∑
n≤x

λ(n) =
x

logx
exp

(
(D + o(1)) log logx

log log logx

)

for a certain explicit positive constant D.
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Eric Schmutz
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But. . .

It’s good to have outsiders investigate a field, and if they were
expected to first read the literature thoroughly, it might
dampen the fresh insight they might bring.

And, his conjecture that the average order of l2(n) grows like
x/ logx is supported on one side by Hooley’s GRH-conditional
proof of Artin’s conjecture. (Assuming the GRH, a positive
proportion of primes p have l2(p) = p− 1, so that just the
contribution of primes to the sum of l2(n) gives an average
order of the shape x/ logx.) And perhaps la(n) is sufficiently
small for composite numbers n, that these do not contribute
too much. Further, perhaps the average order of λ(n) is not
that relevant, since this average is supported on a thin set of
numbers n with abnormally large λ values, and the behavior for
la(n) may be markedly different.
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However. . .
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Kurlberg and P: Let |a| > 1. Assuming the Generalized

Riemann Hypothesis,

1

x

∑
n≤x

(a,n)=1

la(n) =
x

logx
exp

(
(D + o(1)) log logx

log log logx

)
.

Here “D” is the same constant that appears in the average

order of λ(n), namely

D = e−γ
∏
p

(
1−

1

(p− 1)2(p+ 1)

)
= 0.345372 . . . .

In particular, the upper bound in the theorem holds

unconditionally.
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Pär Kurlberg
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The proof is a bit intense, borrowing heavily from the structure

of the proof in Erdős, P, & Schmutz of the corresponding

result for λ(n).

Perhaps it is better to end now, and reflect how the innocent

problem of perfect shuffles has led all this way.
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MERCI!

Further reading:

V. I. Arnold, Number-theoretical turbulence in Fermat–Euler
arithmetics and large Young diagrams geometry statistics,
J. Fluid Mechanics 7 (2005), S4–S50.

P. Kurlberg and C. Pomerance, in progress.

P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda
function, Acta Arith. 58 (1991), 363–385.

C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225
(1967), 209–220.

S. Li and C. Pomerance, On the Artin–Carmichael primitive
root problem on average, Mathematika 55 (2009), 167–176.
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