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Perfect shuffles

Suppose you take a deck of 52 cards, cut it

in half, and perfectly shuffle it (with the

bottom card staying on the bottom and the

top card staying on the top).

If this is done 8 times, the deck returns to

the order it was in before the first shuffle.
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But, if you include the 2 jokers, so there are

54 cards, then it takes 52 shuffles, while a

deck of 50 cards takes 21 shuffles.

Do you believe me? And what’s going on?



Persi Diaconis
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Lets try it out for smaller decks. Say 4

cards.

Number the 4 positions in the deck 0, 1, 2,

3, where 0 is the postion for the top card, 1

is the position for the second card, and so

on. (This is the way computer scientists

count, and the way floors are numbered in

Europe.)
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And here’s one shuffle:

0 0
1 0 2 2
2 1 3 1
3 3



So doing one perfect shuffle on a deck of 4

cards just reverses the two middle cards, so

doing it twice would return the deck to its

original order.
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Lets try 6 cards. Here are two shuffles:

0 0 0
1 0 3 3 0 4 4
2 1 4 1 3 2 3
3 2 5 4 1 5 2
4 2 1
5 5 5

Two shuffles reverse the order of the middle

4 cards, so four shuffles would return this

deck to its starting order.



Lets try 8 cards:

0 0 0 0
1 0 4 4 0 2 2 0 1 1
2 1 5 1 4 6 4 2 3 2
3 2 6 5 1 3 6 4 5 3
4 3 7 2 5 7 1 6 7 4
5 6 3 5
6 3 5 6
7 7 7 7
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So, with 8 cards, it takes 3 shuffles.



And now lets try to see what’s happening

with 2n cards. Here’s one shuffle:

0 0 n 0
1 1 n+ 1 n

2 2 n+ 2 1
3 3 n+ 3 n+ 1
4 4 n+ 4 2
... ... ... ...

2n− 2 n− 2 2n− 2 n− 1
2n− 1 n− 1 2n− 1 2n− 1
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Is there some simple way to explain in a

formula what happens to the card in

position i after one shuffle?



0 0 n 0
1 1 n+ 1 n

2 2 n+ 2 1
3 3 n+ 3 n+ 1
4 4 n+ 4 2
... ... ... ...

2n− 2 n− 2 2n− 2 n− 1
2n− 1 n− 1 2n− 1 2n− 1
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So, the card in position 0 goes to position

0, the card in position 1 goes to position 2,

and so on. For the first half the card in

position i goes to position 2i.

In the second half of the deck: The card in

position n+ i goes to position 2i+ 1, which

we could write as 2(n+ i)− (2n− 1).



Arithmetic modulo m:

Here m is a positive integer. We do ordinary

arithmetic except when we get the answer,

we divide by m and get the remainder.

With m = 2n− 1, we have that one perfect

shuffle on a deck of 2n cards sends a card

in position i to position 2i mod m. (This
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formula doesn’t quite work for the bottom

card, but we know this card stays fixed.)

So, a perfect shuffle just doubles the

position number, as long as we remember to

keep these numbers in our range by dividing

by 2n− 1 and getting the remainder.



Let S(i) be the position that a card in

position i gets sent to after one perfect

shuffle. We have figured out that

S(i) ≡ 2i (mod 2n− 1).

So, if we do two shuffles, we have

S(2)(i) = S(S(i)) ≡ 22i (mod 2n− 1)

and in general after k shuffles,

S(k)(i) ≡ 2ki (mod 2n− 1).
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We’re in the home stretch: We just need to

find the least number k with

2k ≡ 1 (mod 2n− 1).



What are the powers of 2 modulo 51? They

are

2, 4, 8, 16, 32, 13, 26, 1,

so we have

28 ≡ 1 (mod 51)

and this explains the 8 perfect shuffles for a

deck of 52 cards.
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Here’s a question: Given a deck of size 2n

are we sure there will be some number of

perfect shuffles to return it to its order?

That is, are we sure that there is some

positive integer k with

2k ≡ 1 (mod 2n− 1) ?



Well, Euler says ‘yes.’ For a positive integer

m, let ϕ(m) be the number of integers in

{1,2, . . . ,m} that are relatively prime to m.

For example, ϕ(3) = 2, ϕ(10) = 4,

ϕ(51) = 32.

Euler: If the integer a is relatively prime to

m, then

aϕ(m) ≡ 1 (mod m).
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Leonhard Euler
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We are looking at the order function. If

a,m are relatively prime, let la(m) denote

the order of a modulo m, namely the

smallest positive integer k with

ak ≡ 1 (mod m).

From Euler, we know that la(m) exists, and

in fact, it is not hard to show that

la(m) | ϕ(m).
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Here are some values with a = 2, so that it

corresponds to shuffling:

l2(47) = 23, l2(49) = 21, l2(51) = 8, l2(53) = 52, . . .

l2(123) = 20, l2(125) = 100, l2(127) = 7, . . .

When a small change in input can produce

a large change in output, we are looking at



a chaotic function. This function l2(m) for

odd numbers m appears to be chaotic.



Here’s another example. Consider the

length of the repeating period for the

decimal for 1/n. Let this be denoted

Peri(n), so for example, Peri(3) = 1,

Peri(7) = 6. Here are some values for odd

numbers starting above 100:

Peri(101) = 4
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Peri(103) = 34

Peri(107) = 53

Peri(109) = 108

Peri(111) = 3

Peri(113) = 112



For numbers m relatively prime to 10,

Peri(m) = l10(m), so again we have an

order function, and again it is chaotic.
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We have seen in these examples that the

order function la(n) is chaotic, thus

explaining the title of this lecture.

The order function has applications in

cryptography and in computing the periods

of certain pseudo-random number

generators. In fact, the RSA cryptosystem

relies for its security on the difficulty in

computing the order function.
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The Blum–Blum–Shub pseudo-random

number generator: Start with a positive

integer m and a “seed” s, and let

xj = s2j mod m,

for j = 0,1, . . . . To go from xj to xj+1 one

just squares, divides by m, and takes the

remainder. Often this is done with m the

product of two large prime numbers, and
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one creates a stream of 0’s and 1’s based

on whether xj is even or odd.

This is not really random, and in fact it will

eventually be periodic. Say the largest odd

divisor of ls(m) is d. Then the period length

is l2(d).



In the RSA cryptosystem, one has a number

m that is the product of two large primes

and two numbers E and D with ED ≡ 1

(mod ϕ(m)). If M is a message that is a

number in the range 0 to m− 1, then the

encrypted form of the message is

X = ME mod m.

The question is if one can easily retrieve M

from knowing X. If you know the secret
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decryption number D, then yes, since

M = XD mod m.

If you could compute ϕ(m) (which is

essentially equivalent to factoring m), one

could compute D from knowing E.



But if you could compute orders, you’d be

just as happy. Say you could compute

lX(m), call it F . It is easy to come up with

a number D′ with ED′ ≡ 1 (mod F ). And

then

M = XD′ mod m.
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Like computing ϕ(m), computing orders is

essentially as hard as computing the prime

factorization of the modulus m, and we

know no way to routinely factor large

numbers. That is, on conventional

computers.

Quantum computers theoretically can

compute orders very easily. Except it is not

so easy to build a quantum computer!
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How might one “tame” a chaotic function?

One way is to look at it statistically. Lets

take as an example, the function ω(n), the

number of primes that are divisors of n.

For example, ω(10) = 2, ω(11) = 1,

ω(12) = 2, . . . . It does not look very

chaotic!
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However, there is chaos, just a more gentle

variety. Consider for example that

ω(2309) = 1, ω(2310) = 5, ω(2311) = 1.

It is easy to show that on average, ω(n)

behaves like log logn. (In number theory we

use ‘log’ for the natural logarithm.) That is,

1

x

∑
n≤x

ω(n) = log logx+ c+ o(1).
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Thus, the average order of ω(n) is log logn.

This is also the “normal order”: for each

ε > 0, the set of integers n with

(1− ε) log logn < ω(n) < (1 + ε) log logn

has asymptotic density 1 (Hardy &

Ramanujan).



G. H. Hardy S. Ramanujan
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Talk about statistics, we even have the bell

curve showing up. From Erdős & Kac, we

know that for each real number u, the

asymptotic density of the set of integers n

with

ω(n) ≤ log logn+ u
√

log logn

is
1√
2π

∫ u
−∞ e

−t2/2 dt,
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the Gaussian normal distribution.

(Erdős & Kac did not remark: ‘Einstein

says that God does not play dice with the

universe. Maybe so, but something is going

on with the primes.’)



Paul Erdős Mark Kac
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There is some famous work concerning la(p)

where p is a prime not dividing the integer

a. We know that la(p) | ϕ(p) and that

ϕ(p) = p− 1. We also know that there are

choices for a where la(p) = p− 1.

For example, with a = 2 and p = 53. That’s

why it takes a whopping 52 perfect shuffles

for a deck of 54 cards.
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Another example is with a = 10 and

p = 109. That’s why the length of the

repeating period for the decimal expansion

of 1/109 is a whopping 108.

Over two centuries ago, Gauss asked if this

deal with the decimal for 1/p occurred for

infinitely many primes p. I.e., do we have

l10(p) = p− 1 for infinitely many primes p?
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In the mid twentieth century, Artin

generalized Gauss’s conjecture as follows.

Suppose that a is an integer which is not a

square and not −1. The Artin conjecture:

There is a positive constant A(a) such that

asymptotically the proportion of primes p

with la(p) = p− 1 among all primes tends to

A(a).
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This is still not proven, nor even the weaker

assertion that there are infinitely many

primes p with la(p) = p− 1. (This is the

Gauss conjecture when a = 10.)

However, the full Artin conjecture is known

conditionally under the assumption of the

Generalized Riemann Hypothesis, a theorem

of Hooley.



Carl Friedrich Gauss Emil Artin
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One could ask about analogies for

composite numbers. In general, let λ(n)

denote the largest possible value of la(n) as

a varies over numbers relatively prime to n.

We always have λ(n) | ϕ(n), and when n is

prime, they are equal. But most of the time

λ(n) is much smaller than ϕ(n). For

example, ϕ(91) = 72 but λ(91) = 12.
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A natural generalization of the Gauss–Artin

problem:

For a fixed integer a outside of some sparse

exceptional set, do we have la(n) = λ(n) for

a positive proportion B(a) of integers n

relatively prime to a?



In recent work with Li, we showed that

under the assumption of the Generalized

Riemann Hypothesis, the density of such

integers n does not exist: the limsup of the

density is indeed a positive number B(a),

but the liminf is 0.
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Shuguang Li
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It is easy to come up with sets of numbers

which do not have an asymptotic density.

For example, take the numbers with an

even number of digits.

It is a bit of a surprise though when

oscillations occur in non-artificial situations.

Where does the oscillation come from in

considering the frequency of numbers n

with la(n) = λ(n)?
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Consider a game where you have a chance

to win a quarter:

I give you n quarters, you flip them all, and

return to me all that land tails.

You repeat this over and over, but if you

get down to a single quarter, you get to

keep it. (So, for example, if you have 2
34



quarters at one point, you flip them, and

they both come up tails, you lose.)

What is the probability of winning as

n→∞? If you work it out numerically it

appears to converge to some positive

number, but in fact, it does not converge, it

oscillates slightly.



When we’re faced with very hard problems,

sometimes a way of getting some partial

information is to consider the situation on

average. In the two situations we’ve just

looked at, we were considering extreme

values of la(p) and la(n) for a given a.
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We could instead study the average values

of these functions of p or n. One too could

consider the average as a function of a or

over both variables. For example, Luca

worked out the asymptotic behavior of

∑
p≤x

p−1∑
a=1

la(p)

and Hu did the analogous thing for more

general finite fields.
36



Florian Luca Yilan Hu
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The question of the average order of la(n)

for a fixed was recently discussed by

V. I. Arnold.

After some numerical experiments, he

concluded that

1

x

∑
n≤x

la(n) ∼ Cax/ logx.
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He gave a heuristic argument for this based

on the physical principle of turbulence. This

is in the paper

Number-theoretical turbulence in

Fermat–Euler arithmetics and large Young

diagrams geometry statistics, Journal of

Fluid Mechanics 7 (2005), S4–S50.



Vladimir I. Arnold
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Arnold writes in the abstract:

“Many stochastic phenomena in

deterministic mathematics had been

discovered recently by the experimental way,

imitating Kolmogorov’s semi-empirical

methods of discovery of the turbulence

laws. From the deductive mathematics

point of view most of these results are not

theorems, being only descriptions of several
40



millions of particular observations. However,

I hope that they are even more important

than the formal deductions from the formal

axioms, providing new points of view on

difficult problems where no other

approaches are that efficient.”

And he says that his conjecture is supported

by billions of experiments.



I think we should be a bit suspicious!

First, even billions of experiments may not

be enough to tease out extra factors that

may grow more slowly than logx.

Second, Arnold did not seem to investigate

any of the literature dealing with la(n). In

fact, there are interesting papers on the
41



subject going back to Romanoff (who

proved that the sum of 1/(nla(n)) for n

coprime to a is convergent), with later

papers by Erdős, P, Pappalardi, Li,

Kurlberg, Murty, Rosen, Silverman, Saidak,

Moree, Luca, Shparlinski, and others.

In addition he seemed to be unaware of

work done on λ(n).



For la(n) we could ask first the easier

question: What is the average value of

λ(n)? (Recall that we always have

la(n) | λ(n) and often they are equal.)

What this question means is: How does

1

x

∑
n≤x

λ(n)

behave as x→∞ ?
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Erdős, P, Schmutz: As x→∞,

1

x

∑
n≤x

λ(n) =
x

logx
exp

(D + o(1)) log logx

log log logx


for a certain explicit positive constant D.

The extra factor tends to infinity more

slowly than any fixed power of logx.



Eric Schmutz

43



But. . .

It’s good to have outsiders investigate a

field, and if they were expected to first read

the literature thoroughly, it might dampen

the fresh insight they might bring.

And, his conjecture that the average order

of l2(n) grows like x/ logx is supported on
44



one side by Hooley’s GRH-conditional proof

of Artin’s conjecture. (Assuming the GRH,

a positive proportion of primes p have

l2(p) = p− 1, so that just the contribution

of primes to the sum of l2(n) gives an

average order of the shape x/ logx.) And

perhaps la(n) is sufficiently small for

composite numbers n, that these do not

contribute too much. Further, perhaps the



average order of λ(n) is not that relevant,

since this average is supported on a thin set

of numbers n with abnormally large λ

values, and the behavior for la(n) may be

markedly different.



However. . .
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Kurlberg and P: Let |a| > 1. Assuming the

Generalized Riemann Hypothesis,

1

x

∑
n≤x

(a,n)=1

la(n) =
x

logx
exp

(D + o(1)) log logx

log log logx

 .

Here “D” is the same constant that appears

in the average order of λ(n), namely

D = e−γ
∏
p

1−
1

(p− 1)2(p+ 1)

 = 0.345372 . . . .
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In particular, the upper bound in the

theorem holds unconditionally.



Pär Kurlberg
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The proof is a bit intense, borrowing heavily

from the structure of the proof in Erdős, P,

& Schmutz of the corresponding result for

λ(n).

Perhaps it is better to end now, and reflect

how the innocent problem of perfect

shuffles has led all this way.
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THANK YOU!

Further reading:

V. I. Arnold, Number-theoretical turbulence

in Fermat–Euler arithmetics and large

Young diagrams geometry statistics,

J. Fluid Mechanics 7 (2005), S4–S50.
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P. Kurlberg and C. Pomerance, in progress.

P. Erdős, C. Pomerance, and E. Schmutz,

Carmichael’s lambda function, Acta Arith.

58 (1991), 363–385.

C. Hooley, On Artin’s conjecture, J. Reine

Angew. Math. 225 (1967), 209–220.



S. Li and C. Pomerance, On the

Artin–Carmichael primitive root problem on

average, Mathematika 55 (2009), 167–176.


