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To motivate the topic, let’s begin with elliptic curves.

If a, b ∈ Q are such that 4a3 + 27b2 6= 0, the curve

y2 = x3 + ax+ b

is nonsingular. In this case the set of rational points on the

curve form a finitely generated abelian group, with the group

law given by the familiar chord-tangent construction. After

Mazur, we know that the torsion part of the group of rational

points is universally bounded over all elliptic curves over Q.

However, the rank of the free part of this group (known simply

as the rank) may or may not be universally bounded.
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The geometric view of the group law on an elliptic curve with

rational (or real) coefficients gives formulae for group addition

and doubling via calculus and analytic geometry. These

formulae continue to make sense even when we have trouble

picturing what a chord or a tangent looks like.

Let q be a prime power, say a power of the prime p, and let Fq
be a finite field with q elements. For u an indeterminate, we

have the rational function field Fq(u).

If we consider elliptic curves defined over Fq(u) and the points

on such a curve with coordinates in Fq(u), then again, we have

a finitely generated abelian group. And again we can ask if the

rank can be arbitrarily large.
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In 1967, Shafarevich & Tate gave a family of elliptic curves

over Fq(u) where the ranks grow arbitrarily large. Their family

was considered “isotrivial” meaning that the j-invariant of each

curve was in Fq.

In a 2002 Annals paper, Ulmer exhibited a non-isotrivial family,

namely

y2 + xy = x3 − ud,

which has positive-integer parameter d. (The curve is not given

here in Weierstrass form.) In particular, for this curve defined

over Fq(u) (of characteristic p), if d = qn + 1, then the rank of

the curve is about qn/2n.
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More generally, he showed that if −1 ∈ 〈p mod d〉, then the rank

of y2 + xy = x3 − ud over Fq is within 4 of

∑
e|d

ϕ(e)

lq(e)
.

Notation: lq(e) = |〈q mod e〉|.
So, the fraction ϕ(e)/lq(e) is just the index of 〈q mod e〉 in Ue.

In the case that d = qn + 1, the hypothesis −1 ∈ 〈p mod d〉
clearly holds, and each lq(e)|2n, so

∑
e|d

ϕ(e)

lq(e)
≥

1

2n

∑
e|d
ϕ(e) =

d

2n
=
qn + 1

2n
.
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Some natural questions:

• What is the rank on average?

• What is the rank normally?

• Given p, how frequently do we have −1 ∈ 〈p mod d〉?
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Let’s begin with the last question, namely, how special is it for
d to have the property that pn ≡ −1 (mod d) for some n.

To be specific, lets take p = 2 and consider the two sets of
integers:

S : = {d : d | 2n − 1 for some positive integer n}
T : = {d : d | 2n + 1 for some positive integer n}.

Surely they should not be very different!

But they are. For starters, S is just the set of odd numbers, it
has asymptotic density 1/2.

Note that if r ≡ 7 (mod 8), then r cannot divide any member of
T . Indeed, (2/r) = 1, so the order of 2 in Ur divides (r − 1)/2,
which is odd. Hence there can be no n with 2n ≡ −1 (mod r).
Thus, there can be no member of T divisible by such a prime r.
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What can we say about the integers which have no prime

factor r ≡ 7 (mod 8)?

For any finite set P of primes, the density of integers not

divisible by any member of P is∏
r∈P

(
1−

1

r

)
.

Now suppose that P runs over all finite subsets of the primes

r ≡ 7 (mod 8).
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Since ∑
r≤x

r≡7 (mod 8)

1

r
=

1

4
log logx+O(1),

it follows that ∏
r≤x

r≡7 (mod 8)

(
1−

1

r

)
� (logx)−1/4.

In fact, using the fundamental lemma of the sieve, we get that∑
m≤x

r|m =⇒ r 6≡7 (mod 8)

1 �
x

(logx)1/4
.
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By following these ideas more carefully, one can prove that for

p fixed, the number of integers d ≤ x not divisible by p and for

which −1 ∈ 〈p mod d〉 is (cp + o(1))x/(logx)2/3, as x→∞,

where cp is a positive constant. Moree has this worked out in

even finer detail as an asymptotic series.

As for the other questions concerning a statistical study of the

ranks in this family, there have been some results of P and

Shparlinski, and also more recently of Gottschlich.
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Let Rq(d) denote the rank of the elliptic curve y2 + xy = x3− ud
over Fq.

P & Shparlinski (2010). There is an absolute positive
constant α > 1

2 such that

1

x

∑
d≤x

Rq(d) > xα

for all sufficiently large x depending on q. Further,
∑
d≤x

−1∈〈p mod d〉

1


−1

∑
d≤x

−1∈〈p mod d〉

Rq(d) ≤ x1−log log logx/(2 log logx).

And for d in a set of asymptotic density 1, we have, as d→∞,

Rq(d) ≥ (log d)(1
3 + o(1)) log log log d.
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Concerning this last result on the normal size of Rq(d), we
conjectured something stronger if d was forced to run through
the set where −1 ∈ 〈p mod d〉, namely

Conjecture (P & Shparlinski). But for o(x/(logx)2/3)
choices of d ≤ x with −1 ∈ 〈p mod d〉, we have as x→∞

Rq(d) = (log d)(1+o(1)) log log log d

But it seems we were wrong:

Gottschlich (2012). Assuming the GRH, but for
o(x/(logx)2/3) choices for d ≤ x with −1 ∈ 〈p mod d〉, we have
as x→∞

Rq(d) = (log d)(1
3 + o(1)) log log log d.

13



In a more recent paper, Ulmer got a similar formula for the

rank for another family of curves: y2 = x(x+ 1)(x+ ud). This

is (essentially) the Legendre curve. In a very recent preprint,

Ulmer, together with Conceição and Hall, extended the set of

d’s for which the rank formula holds. If we again use the

notation Rq(d) for the rank, they have shown that for p odd,

Rq(d) =
∑
e|d

〈p mod e〉 is balanced

ϕ(e)

lq(e)
.

So, what does it mean for 〈p mod e〉 to be balanced?

It is a generalization of −1 ∈ 〈p mod e〉 (when e > 2) as we shall

now see.
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Assume d > 2. Consider a subgroup H of the unit group Ud.
We say H is balanced if each coset aH of H in Ud contains an
equal number of elements in (0, d/2) as in (d/2, d).

For example, H = Ud is a balanced subgroup of Ud.

Also H = {1,−1} = 〈−1 mod d〉 is balanced. Indeed, if a ∈ Ud,
then aH = {a,−a} and a,−a are in different halves.

If K is a subgroup of Ud containing a balanced subgroup H,
then K too is balanced. Indeed, K is a union of some cosets of
H, say a1H, . . . , akH. Then each coset bK is a union of the
cosets ba1H, . . . , bakH, and since each of these is split 50-50
between the two halves of Ud, so too is bK split 50-50.

As a corollary, if −1 ∈ 〈p mod d〉, then 〈p mod d〉 is balanced, as
is each 〈p mod e〉 for e | d, e > 2.
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However, containing −1 is not the only way for a subgroup of

Ud to be balanced. Here is an interesting family:

Suppose 4 | d. Then 〈12d+ 1 mod d〉 is balanced.

It’s easy to see, since if a ∈ Ud, then a is odd, so that 1
2da = 1

2d

in Ud. Thus, a(1
2d+ 1) = 1

2d+ a, so that a and a(1
2d+ 1) lie in

different halves of Ud.
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Some natural questions:

• Is there a simple criterion for a subgroup H of Ud to be
balanced?

• What are the minimal balanced subgroups of Ud? (It means
that the subgroup should not contain any balanced proper
subgroups.)

• Must a minimal balanced subgroup be cyclic?

• What is the distribution of numbers d such that 〈p mod d〉 is
balanced? In particular, are there substantially more of
them than for the simpler criterion −1 ∈ 〈p mod d〉?
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For a criterion for a subgroup to be balanced, we turn to

Dirichlet characters.

For χ a character modulo d, let

cχ =
∑

a∈(0,d/2)

χ(a).

P & Ulmer (2012). A subgroup H of Ud is balanced if and

only if cχ = 0 for each odd character χ modulo d which is trivial

on H.

A very simple example: H = 〈−1 mod d〉. There are no odd

characters modulo d that are trivial on H, so H is balanced.
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Lets see how to prove this criterion for a subgroup H of Ud to

be balanced. Let A = (0, d/2) ∩ Ud, B = Ud \A. Then H is

balanced if and only if

f(u) := #(uH ∩A)−#(uH ∩B)

is identically 0 on Ud. Write

f =
∑

χ mod d

aχχ, so aχ =
1

ϕ(d)

∑
u∈Ud

f(u)χ−1(u).

Thus, H is balanced if and only if aχ = 0 for all χ mod d. We

check that for χ trivial, aχ is just the average of f(u) over Ud,
so for any H, regardless if it is balanced, we have aχ = 0.
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For χ mod d nontrivial, we work out that

aχ =
2

ϕ(d)

∑
u∈A

χ(u)
∑
h∈H

χ(h) =
2

ϕ(d)
cχ

∑
h∈H

χ(h).

Thus, aχ = 0 if and only if either cχ = 0 or χ is not trivial on

H. Now for χ even and nontrivial, we have cχ = 0. So we see

aχ = 0 for all χ mod d if and only if cχ = 0 for all odd χ trivial

on H. This is the criterion stated earlier for H to be balanced.
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What can be said about cχ =
∑
a∈(0,d/2) χ(a) in general?

We noted that if χ is even, then cχ = 0.

If χ is odd and primitive modulo d, we have that

cχπiτ(χ̄) = L(1, χ̄)(χ̄(2)− 2)d,

where τ(χ̄) is the Gauss sum, and L(1, χ̄) =
∑
n>0 χ̄(n)/n.

In particular, for χ odd and primitive, cχ 6= 0. As a corollary, if

H is balanced in Ud there cannot be any odd primitive

characters modulo d that are trivial on H.
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We can work out exactly when cχ 6= 0. Here χ is an odd

character modulo d induced by a primitive character χ′

modulo d′ (so that d′ is the conductor of χ). Then cχ 6= 0

precisely when both

• Either d/d′ is odd or d ≡ 2 (mod 4).

• For each odd prime ` | d with ` - d′, we have χ′(`) 6= 1.

That is, H is not balanced in Ud if and only if there is an odd

character χ mod d trivial on H induced by a primitive character

χ′ mod d′, with the above bullets holding.
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We can use this criterion to enumerate all pairs H,Ud where H

is a balanced subgroup of Ud and |H| = n. In particular, if H

does not contain −1 nor 1
2d+ 1 in the case that 4 | d, then

there are only finitely many possibilities for pairs H,Ud.

In the case n = 2, the only sporadic balanced subgroups of

order 2 are

• d = 24 and H = 〈17〉 or 〈19〉.

• d = 60 and H = 〈41〉 or 〈49〉.
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Engberg has enumerated the sporadic balanced subgroups of

orders 4, 6, and 8. He found some order 8 minimal balanced

subgroups that are not cyclic, so scratch one question!

While the emphasis in the theorem of P & Ulmer is on balanced

subgroups of small order, Engberg has considered those of

small index, showing for example that for all numbers d, except

for a sparse exceptional set, Ud contains an index-2 sporadic

balanced subgroup. Small index examples are common!

Despite the existence of so many sporadic balanced subgroups,

P & Ulmer conjecture that for most numbers d for which

〈p mod d〉 is balanced, we have −1 ∈ 〈p mod d〉 or 4 | d and
1
2d+ 1 ∈ 〈p mod d〉. That is, for a fixed prime p, if 〈p mod d〉 is

balanced, it is not sporadic.
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To make the conjecture precise, for a given integer p with

|p| > 1, let

Bp = {d : (d, p) = 1, 〈p mod d〉 is balanced},
Bp,0 = {d : 4 | d, (d, p) = 1, 1

2d+ 1 ∈ 〈p mod d〉}
Bp,1 = {d : (d, p) = 1, − 1 ∈ 〈p mod d〉}.

Note that for p even, Bp,0 = ∅ and for p odd, Bp,0 ∩ Bp,1 = {4}.

For any set A of integers, let A(x) = A ∩ [1, x].
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P & Ulmer (2012). If p is odd, then

|Bp,0(x)| �p
x

log logx
.

In all cases, there is a number δp > 0 such that

|Bp(x) \ Bp,0(x)| = O

(
x

(logx)δp

)
.

In particular, if p is odd,

|Bp(x)| = (1 + o(1))|Bp,0(x)|

as x→∞.

Conjecture (P & Ulmer): As x→∞,

|Bp(x)| = |Bp,0(x)|+ (1 + o(1))|Bp,1(x)|.
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Perhaps it is surprising that there are so many more members

of Bp,0 (when p is odd) than of Bp,1. (Recall that when p is

prime, |Bp,1(x)| ∼ cpx/(logx)2/3.)

Why does this happen?

Say p is odd and d = 2jm is coprime to p and j ≥ 2. What can

we say about

v2(lp(d)) ?

(By v2(n) we mean that number v with 2v | n and 2v+1 - n.)

Well, we have

v2(lp(d)) = max{v2(lp(2j)), v2(lp(m))}.

So, what can we say about these two values?
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Note that the power of 2 in lp(m) divides q − 1 for some prime

q | m, and is usually close to the maximal such power of 2. For

most numbers m ≤ x, this power of 2 is close to log logx. That

is, we usually have

2v2(lp(m)) ≈ log logx.

We also have that v2(lp(2j)) = j +Op(1).

It is possible to show too that for most numbers m we have

d = 2jm ∈ Bp,0 if and only if v2(lp(2j)) > v2(lp(m)).

Thus, we obtain a close to necessary and sufficient condition

for d = 2jm to be in Bp,0, namely

2j > log logx.
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The distribution of numbers d = 2jm with 2j > log logx is easy,

this is of magnitude x/ log logx.

However, in our paper, we sketch a proof that there is no

positive constant βp such that

|Bp,0(x)| ∼ βp
x

log logx
as x→∞.

We can use our results plus the techniques from the 2010 work

of P and Shparlinski to get results on average and normally for

Rq(d) for the Legendre curve over Fq(u). In particular for p an

odd prime, we have for almost all d ∈ Bp that

Rq(d) = (log d)(1+o(1)) log log log d as d→∞, with the upper

bound implicit here depending on the GRH.
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Recall the conjecture of P and Ulmer:

|Bp(x)| = |Bp,0(x)|+ (1 + o(1))|Bp,1(x)|

as x→∞. We have the order of magnitude for |Bp,0(x)|, when

p is odd, it is x/ log logx. We have an asymptotic for |Bp,1(x)|,
it is cpx/(logx)2/3. Late breaking news:

Engberg: The conjecture is true, in fact

|Bp(x) \ (Bp,0(x) ∪ Bp,1(x))| = O(x/(logx)2/3+1/1000).

The proof involves a careful classification of the sporadic cases,

plus some big tools from analytic number theory, including the

large sieve and zero density estimates for Hecke L-functions.
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THANK YOU
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