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ESTIMATES FOR CERTAIN SUMS INVOLVING THE LARGEST PRIME

FACTOR OF AN INTEGER ' .

A. IVI® and C. POMERAMNCE

1. INTRODUCTION AND STATEMENT OF RESULTS

Let P(a) for n 2 2 denote the largest prime

factor of an integer n, and let g{(r) and B(n)

denote the additive functions

B(n).= X b, B({n) = Y ap.,
pln a

where as usual p denotes primes and pa” n means that.
a s a+t+l

P divides n but p - does not. Several results
concerning sums with the functions p{(n), B(n) have

been recently obtained. Thus for instance it was proved

in 81 that
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(1.1) I
2,

= x axp{-(2 log x + loglog x)l

+ 0({log x + logleglcg x)llz)},

and the same formula holds also for sums of reciprocals

of Bfn) and &8(a). Moreover (5] contains a proof of
{1.2) v B(n)/a(n) =
2<n<x

= x + x expl-c(log x + loglog x) 1%y, o0,

and for additional results concerning other related

sums the reader is referred to (11, [21 and [6]. Cur aim
here is to prove a result which will yield considerable
sharpenings of (1.1} and (1.2} and will have other
applications as well. In what fellows we suppose that
rz0 is arbitrary but fized, and we let

logsx + log(l+r} - 2 - log 2 9

gr(X) = (1 + )=

(1.3) 2 log, x logzx
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(log,x + log(1l+r) - log 2)?

’

8 loq%x

(1.4) 2 =50 = (log x - logytl?,

where loqu is the k-fold iterated logarithm. Further
we defline
(1.5) s ()= % Lpflw), 7 ()= L 1/e7).
r 25nsx 2Znsx
Pz(n}ln
Thus for instance TO(X) represents the number of

a a

nsx of the form n=pll...pkk where Py ZeeiPpy and

alzz. Our result is the folleowing
THEOREM.
(1.6) s {x} =
r

= x expl-(20) L0 ey GO 4 o(logix/logyx)))
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(1.7 T (x) =

=« expl-o) MG Qrg G 0(logix/Logae))} .

From ¢1.6) and (1.7) we shall deduce the following

COROLLARY .
(r.s) L 1l/8(a) =
28n=Zx

=% exp (212000 (g () + 0(logix/logyx)))

(1.9 z
25nsx

1/B(n) =

= x exp{—2llzb(x)(ngO(x) + O(loggxlloggx))} '
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(1.10) by B(n)/p(n) =
25nsx
= x + x exp{—21’2L(x)(l+go(x) + o(loggxfloggx))} ,

(1.11) ¥ 1f8te) - T if(ay = -

2€n<x 2€ngx

= x exp{-25(x){1+g, (x) + o(loggxfloggx))} .

The method of proof of ocur theorem may be used for
the estimation of other related arithmetic sums. If
w(a) and 0(p} denote as usuwal the number of distinct
prime factors of n  and the number of total prime fac-
tors of n respectively, then following the proof of
(1.10) and {1.ll) we obtain

Rind/pin} - %

(1.12) T w{n)/pln) =
28nsx 2<psx
- 773 -



= x exp (-2 250x) (Lhgy (x) + 0Qlogdx/10g7:00)

(1.13) Ty stmeln)) - £ Yfalainiad) =
25nsx 2<nsx
= 5 exp(-21/ %2 () (Lgy () + 0Clogle/logia))l.

Also if Ur(x) denotes the number of nsx of the

a &

k
form n=py TPy where Py D> By and aer,

where r22 fixed, then we have

{1.14) v (x) =
r

- x expl-Ce- G (e, 00 +

+O{Mg%IMQ;)”-
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factors do net exceed y.

© 2. ESTIMATES FOR 4(x,y)

The proof of {1.1) which was given in {93 depended

on estimates for

$l{x,y) = E 1,
n<x,Pln)<y

the number of r not exeeeding x all of whose prime
Qur proof of (1.6) ard {(1.7)
will also depend-on estimates for 4&(x,y), and the
formula for sl(x) furnished by (1.6) is sharper than
(l.1). This is due to a modified method of preof and to
the fact that we are now able to use the follewing

recent result proved in [41:

{2.1) ${x,y) =

logzu—l
= x exp{-u(log v + logyu = 1 + Brrare +
2
+ O((10g2u[10g u)T))L,
where e® < u = log xflog y £ (l-g)lag x/logzx, and the

v —constant depends only on ¢. The upper bound implicit

in (2.1) can already be found in N.G. DE BRUIJN C3].
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However the lower bound improves on that of H. HALBERSTAM

£73, the estimate used in £83. In particular (7] gives
(2.2) 4lx,y) F x exp(-~e(log u + log,u + r{u))),

where u23, gayl(u), and R(u) 1is explicitly given
and is o(l). Though [7] gives no explicit evaluation
of gl(u), it is 'seen by fullowing Halbersﬁam’s proof
that one may take gy, (v} = exp(logsl3+su) for uzugle);
the main observation Is that on p.l06 of £7]1 instead
of o©{l}log x) for the error term in the formula for

¥, 1/p one can use the sharper error term
pP=x
O(exp(“10g315-sx)) which comes from the strongest

varsion of the prime number theorem. Thus certainly one
can apply.(Z.Z) in the range needed in the preoof of (1.1),
but nevertheless (2.2) 1s now superséded by (2.1).

Though (2.1) is not an asymptotic formula in the strict
sense, it is particularly well-guited for our purposes,
since it yields an eguality for +¢(x,y) for a large
range of u=log x/log y. For ranges of validity of a

true asymptotic formula for ¢(x,y) of the form

¢lx,y) = (L + o(13)xp(u),
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the reader should consult the papers of DE BRUIJN [31.

3. PRCOF QF THE THEOREM

We begin by noting that

(3.1) r (x) = L g =L P~r¢(kp-2;p)r
plex pxl/? ,
Plm)<p

(3.2) g.(x) = % Pr= X P_r¢(xp_l:p)-
pmEx pPEX
plm)sp

so that the expressions for Tr(x) and 5 _{(x) are
X

similar, and so will be the

the details only for (1.7).

(3.3 T, (%) = P
p<expl(Lf(

+

+ z
prexpl{(dr+dd)

where 5=rL(x) is given by (1.4}. Note that from (2.1)

L
expl(Lf(4r+4))sp

First from (3.1} we have

dr+d))

: +
<exp((4r+d)L)}

= ¥
R

777 -

proofs. We give therefore all



one has

(3.4} blx,exp(L/{4r+4)}) = x exp({-1 + o(1))¥(2r+2)L),

which gives

p“r¢(xp_2:p) <

I

(3.5) I, z
p<exp(Lf(4-r+4) )

< exp(n/(4r+4)) 4 (x,exp(5/ (drtd})) =

= x exp(((dr+4)" 1 = (2042) + o(L))z].

- (2r+2) < ~2e+) 7 for a1l

Note that (4r+4)_1

is negligible.

r20; so that I

Next, trivially we have

(3.86) B, = R

E
prexp((dr+d)5}

< i -2 € x exp(-(dr+4i1),

z
prexp({dr+4)5)

so that ES is negligible as well.

For the remaining sum
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[N —-r -2
exp (L[ (4r+4))Spsexp((drtdyzy & VXB 1P

we further restrict the interval of summation, Letg

(3.7

Tr,c(X) = p"r¢(xp—2:p)

z
exp(cL-l)SpSexp(cL)

r

denote that value of e€0 (4r+d) 7L,

a
nd let €y 4rid]

.for which Tr‘c(x) is maximal. Then clearly

(3-3) T O(x) < 22 < (dr+d) Lo {x).

Ir,c r,c
o]

Thus from (3,3), €3.5), (3.8) and (3.8) it will

suffica to show that 7 {x}
r,e

hand side of (1.7}, For ¢ (x)

Ir,c

is equal to the right-

we have
v = log gxp 2 =
9 xp “[flog p = log xflog p ~ 2 =
=-log xfer + of{l),
_ 1 1
log o = 5 logzx ) log3x ~ log ¢

+ 0((log,x/log x)L/2y,

lo = -
q,u log3x log? - (log3x + 2log cJ/logzx +

- 779 ~



+ O(loqullcggx)

and therefore (2.1) gives

(3.9} T (x) = T T2 x
e exp{cL~1)<spsexp{erL)

logzﬁ—l
exp{-u{log u + log,u - 1+ Tog T +

x

logzu 9
1 O((IEEFE) Nt =
= expl-n(x)}{(L+rde + (26 T(lrele,dNT,
where
logsx—Zlog ¢-2log2-2
(3.1 elx,e) = +

logzx

2log3x—4log c—diog2-4

loggx

+ 0((10g§xiloggx)).
To obtain the maximal value we set

(1.11) e = ((Lead/2e2e00Y2,
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where d=d{x,r) 1s to be suitably determined. Before

we proceed to determine d precisely, we may remark

_ that using weaker estimates for o(x,y) than (2.1) we

may obtain a weaker result than our theorem. Specifi-~
cally, if we use {31 for the upper bound for ¢{x,y)
and [71 for the lower bound for 4{x,y), then we have
(3.9) with e{x,c) = (lOg3x + O(l))llogzx only. Then
ocbviously one has to choose in (3,11) 4 = (log3x +
+ 0(1))/logyx 1if Tr'c(x) is to be maximal, and this

leads to

7 {x) =

1/2

= x exp{-(2r+2)} L(x)(l+10g3x/(zlogzx) +

+ o(ljlogzx))},
and to a corresponding result for Sr(X) with (‘Zr)l’,2
instead of (2r+2)112. This is weaker than (l.6) and
(1.7}, but still improves (i.l). For a more precise
determination of 4 in (3.11) ‘with e{x,¢) given by

(3.10) we use
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2lcg ¢ = log(l+d) - log(2+2r) =

= a + 0(a®) - log2 - log(l4r),

1 .2

(1+cr)”2 =1+ % a - 3 a+ O(d3),

(1+a) M2 =

Then we have

(Lérde + (20) 1 (l4slx,e)) =

_ (Lltz 142 1 2
= 35

_ (L2
= { 5 )

where

(2 ¢ §d°+ 0ld) + elx,e) (L = 30

(F_(a) + o(loggx/10g§x)),

log3x+log(l+r)-iog2

-4
Fx(d) =2+ yd 4 (1 2)

2

2 2 3
logzx

* (1 + logzx(l i logzx

) -

Now Fr(d) is a guadratic function in
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logzx

"minimal value F(do) is attained for

loq3x + log(l+r) - log2 2

(1 '+ logzx

Y
I
R
U

o] logzx h

and equals

log3x + leg(lter) ~ 2 - logz

Fuldg) =2 4 tog,x ; *
2
NPT S (logyx + log{l+r) - log2) .\
logzx 4 loggx

+ 0(1og§xlloggx} = 2 + Zgr(x) + O(loggx[loggx),

where gr(x) is given by {(1.3). Therefore we obtain

{(1,7), and the procf of (1.6) is analogous.

4, PROOF OF THE COROLLARY

From {1.6) with r=1 and
p{n} £ B(n) = B(n) 2 N(n)P(n) £ (Fln)log n)flog2

we obtain at once (1.8} and (1.9). For (1.10) first note

that
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(4.1)

where we

- g{n)

have

ané the proef of (1.10) will be finished when we show thay

T sln)fBln) - x =
2<nsx

I (Bln)-8(n))/8{n) = o(l) =
2%n<x

(8(n)-g(nX)r{n) + o(l) 2

w

log2(log x)_l v
28ngx

2%(n) In

v

To(x)l(2log x) + o(l) =

* exp{HZleL(x}{l + go(x) +

G(loqulloggk})]:

+

wsed (1.7 with r=¢c and the fact that B(n) -

when Pz(n)ln.

pin) For the upper bound we

 {a(a)-g(n))/{Bln) <

28n<x

<« L (8(n)=-B{n)}/P(n) + To(x)loq '
2<nsx
P{n}ln
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O(Xllz)

Iy (e{n)-8(a))[p(n) =
2<n<x
r{n)lln

{d4.2) © &

x exp{—zllzn(x)(l + go(x) +

A

+ o(loggxfloggx))}.

Fa

To prove {(4.2) observe that every n may be written

uniquély as n = g(nls(n), (gln),s(n}) =1, Qhere

q{n) 1is square-free and s(n) ‘is square~full (s is
square-full if len whenever plin}., Since there are

square—full numbers not exceeding x we have

I (an)-8{m)¥pin) <
nsx
s(n)zexp(5L)
< log x IN 1 <
nsx
s{n)zexp{5L5)
£ log x z xs_l <« x exp(-25).
s square-full
szexp(5L)

Denoting sgquare—free numbers by g and sguare—-full
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£ e have then - . .
numbers by & we have B{s) - 8(s) < a(s)log s @Csllzlog 5,

5 = B (B(n)-B(n))/p(n) + olx exp(-25)}
nEx -1/2 2
- L s log s € &
s{n)<exp{55), 2(n)lln ecoxa(sn) ,
= IS (B{s)-R{s)) z 1iptg)+to(x exp(-2d and for s < exp(5r)
s<exp(5L) g<xfs,(q s3=1, :

plgi>p(s)
12 L(x}(l + go(-‘f)) - nl{xfs){1 + go(:r;'s)) E
s'log s L 1lfp{n) +

<<«
s<exp(SL)} nsxls
3 3
172 <« logaxlloqzx.
+ ofx exp(-28)) = x N s log s x
s<esp(5L) )
Finally to see that (1.11) holds note that by (1.7)
1/2 _
x expl-2 Lix/s) (Ll + go{xfs) + with r=1 we bave
3 3 - .
+ oliegyx/logyx))) + olx exp(-20)) L (L/ala) - 1/se)) >
’ 2gnsx
= x exp(‘ZlIZL(x)(l + g (x) % _— N
‘ o * log “x ¥ (8(a) - Ba))/P%(a) >
2<ngx
2
3 3 P (ndin
+ o(long!logzx))].
» log %% © 1/e(n) =
Here we used (1.6) with r=1. Also for (g,s)}=1, ¢ 2;"53
P°(n)ln

squarefree, s square-full we have

= Tl(x)lﬁgﬁzg =
Blsq) - 8(sg) = B(s) - B(s),
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= x exp(-25{x) (2 + gy (x) +
3 3
+ o(logixflogix}¥)}.
3 2
For the upper bound we have

L Q/slay - 1/Ba)) <
2<psy

€ rloleg x + L (8 - 8 /e2(a).

25nsx
p(n)ln

Here again by (1.7} Tl(x)log x is of the right
order of magnitude, while the remaining sum is estimated

in the same way as was the sum 5 in (4.2}.
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