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ON PRODUCTS OF SEQUENCES OF INTEGERS
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1. INTRODUCTION

In this paper our goal is to show that if A and B
are "dense" sets of integers then there are "many"
distinct products of the form ab where a €A, beB,
Furthermore, we wlll show that this fact can be applied
to study certain multiplicative "hybrid problems”, i.e.,
multiplicative problems involving both general sets and
special sets,

In 1960, Paul Erdds [1] showed the following,

surprising result: the number of distinct integers of
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the form ab where a, b are natural numbers not exceeding

X 1s
(1.1 xz(log xJ-a+°(1J

where « =1 ~log{e log 2)/log 2 =0.0860,., ., Thus we have
the seemingly paradoxical result that only o(xz) integers
may be found in the "multiplication table” of the
integers up to x.

‘ This paradox may be explained via the function w(n),
the number of distinct prime factors of n, It has been
known since Harxdy and Ramanujan {3] that the normal
order of vw(n) 1s loglog n. Thus a "normal product" of
integers a,b 5% would have ébout 2 leglog x prime factors,
which is gquite abnormal for 1integers below-xz. In factk,
the bulk of the products abk making up the count (1,1)
come from factors a, b with less than the normal
number of prime factors.

Thus it should be expected that if a certain thin
subset i1s deleted from the sét of ‘integers up to x, then
in fact there should bhe considerably fewai products ab
than the count in (1.1). Indeed this is true and easy
to see using the results in the aforementioned paper of

Hardy and Ramanujan (see (2,14) below). By taking

A=B=[n<x : vin) 2 loglog x - {loglog x)2/3},
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then |A[ =|B| =(1 +06(1))x, while

(1.2)  1AB| =x%(log x)1~2 109 2 + o(D)

where | | denotes the cardinality of the enclosed set
and AB denctes the set of products ab where a€A,
beB, ,

1t may be asked if the drop in the exponent from -a
to 1 -2 leg 2 between (1,.1) and (1.2) can be induced to
drop still further by chcosing the sets A, B a bit
thinner. The principal result in this paper is that the
expression on the right of {1,2) essentially gives the

correct lower bound for }AB| szo lony as A, B are "dense".

We shall prove the following result.

THEOREM 1, If € >0, § >0 are arbitrary, then there
exists some A, =x0(a,6) such that 1f x >Xgs

A,BcC{1,2,..., 2]} and

{(1.3) 1A} >ex, B} >ex,
then

(1.4)  1AB] >x%(log x)172 o9 24

Section 2 below will be devoted to proving Theorem

1. It should be noted that the method of proof could
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also be used to treat the case when the & in the theorem
is not fixed, but allowed to tend to 0 "slowly". In
section 3 it will be shown that the numerousness of the
product set AB given by (1.4) implies there are produéts
that are "close" to some number of a special sequence.
Specifically, the spe&ial sequences considered are the
primes and the integers free of large prime factors.
Filanally we remark that Theorem 1 implies we have

equality in {1.2)

2. PROOF OF THEOREM 1

We begin by showing that we may replace A by a
"dense" subset AO such that the elements of AO do not
have toc many prime factors, all have the same laxgest
sgquare factor and are all in an interval of the form
u,2u] {(and simillarly for the set B).

Let t{n) denote the largest integer such that
t(n)%(n, If t is a natural number, then the number of

nsx with t(n) >t is at most

[

©

o
z i% <x I
1=t+1[4 1=t

oY
“®
o~ 8

A
12
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Thus 1f A’ is the set of a €A with t(a) €1 +2/e, then

1AV > % X

Hence, if A(t) 1s the set of a €A with t(a)

there 1is some

t, <1 +2/¢

0

with

E:2
< x

e
IA(tG)l >m X >

Let R be an integer so that

2
< &

-R
2 1

< 2-R+1 A

f.e., R = Nog,(12/e®)]. Then

;

R

e? -
e x<IA(tO)ISZ
r=1

"o

= % + R+ max iA{{:O) n [2°

1 t<r=<R

&

implies there is some

2
E
]A(to) n fu,2ul | >ﬁﬁ X .
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X

= t, then

R
x+ 3 1Ak 0 [277x, 27T

2—r+1x]]

u of the form 2 Tx with




Let AO be tha set of a EA(tO} N fu,2ul with

(2.1 v(a) £ [legleg x + (logloy x)2[3] = T

Since by [31 the number of asx for which (2,1) fails

is o(x), we have, for large X,

2
£
{2.2) IAOI >T3_Rx .

To summarize, AO ig a subset of A for which (2.2}

holds-and every member a of AO satisfies t{a) = to,

u<a<2u and (2.1). gimilarly there are numbers t1,v

such that 1f BO is the set of b€B for which t(b} = &y,
v <b £2v and v(b) satisfies (2,1}, then 180| >
> (e2/(13R)) %,

Let D denote the set of integers d =a]t§ where
a==A0 and similarly let E denote the set of integers
e =bjt? where bC8,, Then every membor of AB, is of the

form _detgt% where d€D, e€E, so that

(2.3) 1ABI 2 Ay Byl = IDE| .

Thus 1s suffices to estimate [DE},

Note that
l_:2
(2.4) IDL, [El > 43 %
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every member of D, E is squarefree with at most T

distinct prime factors and

€2 2 2 2

(2.5) Dc[i,?_u,ﬁ¢_v_'2_v
o "o 1Y

where 2u, 2v £X. ;

Let us denote the number of solutions of
de =n, d€D, e€E

by f(n). By the Cauchy-Shwarz inequality we have

(2.6) - IDEJ= I 12 (& £nN2/5 g2
It

£{n)>0 n

In view of (2.4} we have

G ,

(2.7
69R"

E £(n) = |IDXE] = |DI{E[ >
n 1

so that it suffices to give an upper bound for the mean

square

=@ =s ¢ 1 nis

z 1,
n n de=n d.e e
&D, ek 31 1_“6:02
179y
e, ,0,5E
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In other words, Mz'denotes the number of solutions

of

dte1 = dzez, d1, &2 e D and eqr €y e E

or,; 1ln eguivalent form,

d e -
_2.=_1- . d1, dzeD and ey ezeE

Let us write the rational number in this equation in
reduced form:

d e
(2,8) =2 = g , where (p,g) =1 .

dy e

Tt follows from (2.5) that 1/2 < pfg £ 2 and thus

there is a positive integer k s 1 + log x] with

k=2

(2.9) X2 <p,qzef.

By (2.8) there exist positive integers r, s such

that

(2.10} d1 = TP, d2 =1rq, 8, ~ 8Py & = 84 .

By (2.9) we have

d
"
P k-2 '

{2.91) r =
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By (2.10) and the fact that d1. dz e D, €1+ 89 & E wa

have
v(dq) = wx) + vip) 5T, v(dz) =iz + viqg) s T
v(e2 Y= v(s) + u(p) < T,'v(e1) =u(s) +vlg s
and hence

’

(2.12) max(v(xr), v(s)) +max(v{p), v(@) < T .

From (2.9), (2.11) and (2.12) there exist integers
1<ks=< [1+logxi.and 0 < 2 €7 with

P,d€ {n s e win) 5 &) ,

s & (ng x/ef 2 vy s T - 83 L

Hence the number M2 of quadruplets p, g, ¥, 8 1s not

greater than

{itlog x] T
ws £ I lhs vt s 112 1 g K Putm) s 7 - 91
k=180
2,
(2,13} <0 [1+leg x] (k % .2
z max (w,{e" ) 7. ¢ J)
= aeer b 3 k2T

where by ﬂt(y) we mean the number of n < y with v(n) = t.
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From [3] we have absolute positive constants <y, %

X
k-z) << k(log x - k)

k
m,(e™) w.(
i 3j e

c. such that for all natural numbers t and every y =3

2
. f—(i+j—2)(loq k + log(log x - k)+ 03)T
(2.14 ; v {loglog y + 32)1-1 (2.16) [IEETE§_§ - T
2.14) . ly) s¢ Tog v 1=171 .
<< Lix) X (log k¥ + log{loy x - k))T
chus for 1 £ k £ [1 + log x] and 1 + ] § T we have k(log x - k} E
11 where L(x) 3= exp{{logloyg 3213 ¢ (loglog x)1’3] -

k {log k + c,}

k % a” 2 -
iy (&™) my (ek_z) < 7131 ' = {log x
$ince the terms k = 4 and k = log x - & play a

)0(1)

L o2 (1oglog(xe'k+?)+cz)j'1 symmetric role in (2.16} we obtain from (2.13) that
: P N G- «
log(xe )
1+§=2 (- log x + 1} 2
X . = i-1 z T + -7
(2.15) << Mg x-®  TFI -2 [ o1 ](log k+02) M, << L(x)3 s lﬂ_logxx 5 e (Qog k lo%(loq x - kN ]
k=1 T

e-k+2 j=1 x
{Ioglog(x )+ 02) E RS M

[+ logx + 11
2 32 27 2T
1 k42 1452 <« K L0 % ¢ foakre
- Tl—_'_—j_—ij—l (log k + 1og'log(xe )+ 2}(2) . {log X) k=1 K T
Since log k + loglog(xe"k+2) > loglog x, we have from
tef

(2.15) that < % L(x)5

z z
1<tslog £ log x + 1) = K
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{2.17) << x2 1.(::)S

1 3) 4T
E 7 1+"T"' .
1202log [1/2 log % + il e

Writing F{u) = e ™M1 + u/T)zT it 1s easy to see that the
function F(u) 1s increasing on 0 < u < T. Thus from
(2.17) we obtain '
21 logleg %
M, N L(x)s (logloy x) 5&.— << %2 160° [%]
(2.18) ¢

= (og 009 2 - 11008,

Finally, putting {(2.18) into (2.6) and using (2.3)
and (2.7) we have
4

[ 2
x“{log x)
16982 L(x)®

1AB| >> -2 log 2

(2.19}

where the implied constant is ahsolute. Sinde L(x) =

= (leg x)°(1) and R << log{ife), we have our theorem.

REMARK. By changing the definition of T in (2.7} to
[(1 + n{x))Yloglog x] whexe n(x)-*0+ sufficiently slowly,

the above proof would give a stronger result where g is

allowed to be any function of the form if(log x)°(1). in
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fact 1f § > 0 is fixed in the theorem, we may chcose ¢
¢,d
as small as 1/(log x} * "where ¢, » 0 is some absolute

constant.

3, APPLICATIONS

.

In a recent paper, Iwaniec and Sérkﬁéy [6] proved
that 1f A, B are "dense" seté of integers, then there is
a product ab € AB which is "near" a square. Specifically,
they showed that if A, BC {1,2,..., xl}, 1AL, 1Bl > ex,

then for x z x4 (e) there is a solution to the inegquality

2
lab =n“l < (x log x)”"z, aehA, beEB, nez

A result such as thig does not immediately follow from
Theorem 1 above since the number of integers m s x2 such

that

Im -n2I < {x log x)”2

for some integer n is << x3f2(log x)1i2.

However, there are speclal sets other than the
squares for which an easy application of Theorem {1 gives

a result that appears to be worth stating.
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THEOREM 2, Let ¢ > 0, & > 0 be arbitrary. Then
there exists a constant %, = xy{e+8) such that if
X 2z Ko A, Bc§1,2,...,[x]} and [A], IB] > ex, then
there exist a€A, bEB and a prime p such that

1/5 + 8§

< X

(3.1 fab - pi

Assuming the Riemann hypothesis, the right side of (3.1}

may be replaced with (log x)1+2 log =46

THEOREM 3, with the same hypotheses as Theorem 2
there is an x, = xo(e,ﬁ) such that 1f x = x, then for

any y 2 exp((log x)5'{6 +5] there is a solution to the

inequality
t]é
tab -nl £y « exp{(2 log X }, a€A, bebB

where no prime factor of n exceeds y. Moreover if

n >0 is arbitrary, then there is an x4 = x1(e,6,n) such

that if x ZXqs there is a solution to the inequality

Mb-nISxﬁ,aEA.bEB

n

where no prime factor of n exceeds X .

(Note that the full strength of Theorem 1 is needed

only in the proof of the second half of Theorem 2, while
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the first half of Theorem 2 and Theorem 3 follow from
ahy estimate of the type [AB} > xz(log %)%, and, 1in
fact, this ¢an be proved much more easily with, say,

c=21log 2 + 6.)

PROGF OF THEOREM 2. Let = denote the n-th prime.

a theorem of Harman [4] is that

(3.2) )

b
P =X Pn) <<

ﬁpn+1 log x

' 1—%«5
Phiq Py 2x

for any fixed 6> 0. Replacing & by 5 6 and x by x* in

this result, Theorem 1 impligs there 1s some ab with

a€A, bE€B that is not in any interval [pn, pn+11 with
1
g+é

2 .
P, =X and Phyp = By 2 X . Then the closest prime

p to ab satisfies (3.1},

Now agsume the Riemann hypothesis holds. From
Selberg (1 we have ' .

) - x —_—
b x (Ppyq = Py) <<F (log x)

Ppsq17Pp2H

uniformly for all Hz1, Thus our result follows by

x 2 142 log 2 + &

replacing with x” and choosing H = {loy x}
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REMARK, In [5], Harman announced a result analogous
to (3.2) with 1/10 replaced by 1/12 and with xflog X
replaced by of(x), If this o{x) can be improved to
x(log x) 172 109 2-8 ipen the 1/5 in (3.1) can be

replaced with 1/6.

PROOF OF THEOREM 3. The fikst result foilows
immediately from Theorem 1 above and Theorem 6 in
Friedlander and Lagarias [2] while the second result

follows frem Theorem 1 above and Theorem 5 in i21.
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