NEARLY PARALLEL VECTORS

HAROLD G. DIAMOND anp CARL POMERANCE

§1. Introduction. The first problem in diophantine approximation is for a given
real number ¢ and positive number x to find a fraction s/t with t < x whichiscloseto ¢.
This problem can be rephrased in geometric terms. Given a vector v in R?, find a vector
a = (a,, a,) with integer coordinates and 1 < a, < x such that the vectorsa and v are
nearly parallel. Simultaneous approximation of d—1 real numbers can be recast in
terms of approximation of the angle between two vectors in d-dimensional Euclidean
space.

In the geometric form it is natural to replace the condition 1 < a; < x by the
symmetric condition that a lies in a sphere S(r) of radius r centred at the origin. We shall
investigate how nearly parallel two vectors in S(r) n Z“ can be.

We define in the usual way the length of a vector and the angle between two vectors
in d-dimensional space, d > 2. Let 6(r) denote the infimum over all dimensionsd > 2 of
the minimal positive angle between all pairs of nonzero vectors in S(r) n Z%. We shall
consider the problem of estimating 6(r) and characterizing the pairs of vectors for which
the minimum is attained.

Initial speculation centred upon angles formed by pairs of vectors such as (3, 5, 8
and (5, 8, 13). The components of these vectors are successive Fibonacci numbers, and
hence the ratios of the corresponding components are nearly constant. However, it is
easily seen that a significantly smaller angle is provided by the more prosaic pair ol
vectors (15, 1) and (16, 1). This and some other examples suggested that, with a small
number of exceptions, the minimal angles were to be found among a few classes of twe
dimensional vectors. Precisely, we have

THeOREM 1. Ifr 2 \/10 then the minimal positive angle 6(r) is achieved by pairs oj
two dimensional vectors belonging only to the following four classes (up to reflections ana
rotations with respect to the coordinate axes):

Class Vectors Asymptotic Direction
1 (n,1)and (n—1,1) (1,0)
2 (n,n—1) and (n+1,n) (L1
3 2n—1,n—1)and(2n+1,n) 2,1-)
4 ~ (2n+1,n+1)and(2n—1,n) (2,1+)

There are four exceptional pairs of vectors making a small angle. The minimal
angles achieved by pairs of vectors of small norm are listed in Table 1. Notice that for
\/ B <r< \/ 37 we have two essentially different ways of realizing 6(r). We take up
this phenomenon of ties in §5.

Some computation suggests that the minimizing vectors belong to class 1 for about
3/4 the values of r, to class 2 for about 1/5 the values of r, and to class 3 and class 4 each
for about 1/50 the values of r. We ask whether each of the four cases actually provides a
minimal angle for a sequence of r’s tending to infinity. We answer this question in the
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affirmative by showing that the occurrence of each class has a positive asymptotic
density. For j = 1,2, 3,4 and m Lebesgue measure, let

d; = lim x~"m{r < x:0(r) is achieved in class j} ,

J
X o

provided that these densities exist.

Table 1

r range vectors O(r) in degrees cot 0r)
[1,/2) (1,0) and (0, 1) 90 0
(V2.3 (1, 1) and (0, 1) 45 1
(V3.2 (1,1,0)and (1,1,1) 3526 V2
[2,/5) {1,1,1,0)and (1,1,1, 1) 30 V3
[V5.3) 2, 1) and (1, 1) 1843 3
{3,./10) (1,1, 1yand (1, 2,2) 1579 512
[/10,/13) (3,1)and (2, 1) 813 7
[V13, /17 (2,1) and (3,2) 713 8
(/17,9 (4,1) and (3, 1) 440 13
(5, /26) (3,2) and (4,3) 318 18
[/26,/37) (5,1) and (4, 1) 273 21
[/34,/37) (5,3) and (3,2) 273 21

THEOREM 2. The densities d,, d,, d5, and d, exist. Their values are
d, = (960—275\/2—252\/54— 54\/10)/240 = (0-743188 ,
d, = (——180+325\/2—72\/10)/24O = 0216398,
dy = d, = (—270-25./2+126,/5+9./10)/240 = 0020207 .
We can restate the theorem in more colourful language: for a randomly chosen
radius r, the probability that 6(r) is achieved by a pair of (1, 0) vectors is about 74%;, etc.
We have also found the relative frequency of occurrence of the four classes. More
precisely, let N(r) denote the number of pairs of vectors a, b in class j for which

r = |a| = |b|and a, b determines the minimal angle for vectors of length at most |a]. We
prove

THEOREM 3. For 1 < j < 4, the relation N (r) ~ c;r holds. The values of the c; are

V21 = 0560660,

Bl

cl = 15 c2 =
and
ey = ¢y = (—30—15./2+18,/5+5,/10)/40 = 0-121185.

A corollary of Theorems 2 and 3 is that if the pair a, b gives a minimal angle and lies
in class j, then the average length of the interval of r’s for which the pair gives the
minimal angle is d;/c;.

We mention a few further problems which we shall not discuss.
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(1) Higher dimensions. Given d > 3, can one similarly characterize triples of
vectors in S(r) n Z¢ which make a minimal positive solid angle? Analogous questions
can be asked for quadruples of vectors, etc.

(2) Metrics. Suppose a,/a, and b,/b, are adjacent terms in some Farey sequence
in [0, 1] (¢f- [1, Ch. 3]). Their difference is |a,/a, — b,/b,| = 1/(a,b,). Another measure
of the proximity of a,/a, and b,/b, is provided by the tangent of the positive angle 0
between the vectorsa = (a,, a,}and b = (b, b,), a relation we shall exploit. We have

| ayja;—by/by | _ 1 1

\L+(ay/a))by/by)|  ayb,+ayb, a.b’

tan 0 =

What other measurements of diophantine approximation have a reasonable
interpretation and admit analytic treatment?

We express our thanks to Professors Walter Philipp and Steven Ullom for helpful
conversations upon some probabilistic and algebraic aspects of this article.

§2. The four classes of vectors: proof of Theorem 1. Let a = (a,,...,q,) and
b = (by,..., b,) € Z* and let 6 = 6(a, b) denote the (non-negative) angle between a and
b. We have

(a.b)? 62

20 = =1-
oS0 = Jal P Al b2’

(1)

where

5 = d(a,b) = {|al*|b]* —(a.b)*}!/?

:{ 5 (aibj—ajb,-)z}l/z

1gi<j<d
= [a||b| sin § = area of the parallelogram spanned by a and b. 2)
Equivalent with (1), we can write

cos .
cotf = (1 —cos?0) =a.b/d. (3)

Several of our arguments will depend on

LEMMA 1. Suppose a,be Z% |a| = |b|, and 0 < 6(a,b) < n/2. Then

jal*>  lalla—b|
cot B(a,b) < 5a b) 5@.b) +1.
Proof. We have by (2) that
5(a.b) = |a (ak“f'?“ ’
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The triangle inequality and the inequality 1 —[(a . b)/ja]*] = 0 yield

(a.b)a] (a.b)a

—b
a? | [ P

la—b| < |a—

(a.b) 0

lal lal -

= lal_

Thus.
(a.b) _[a* l|a|la—b]
<o BRI
5 5 s T

and the desired inequality follows from (3).

All vectors in Z“ have length \/ N, N a non-negative integer. It follows that
Q(r) = 6(\/[r2]), and in the rest of this section we shall assume that 2 is a positive
integer.

LEMMA 2. Ifr = 3/2 then cot 6(r) = r? —3r+3.

Proof. Lletn = [\/(rz—l)], so that n? +1 < r? € (n+1)2 By (3) we have

cot 8(r) = cotO((n—1,1), (n, 1))
=n’—n+1=n+1-3n+1)+3 > r?-3r*=3r+3.
Now suppose a, b) = 0(r) where r = ja| = |b|. We show that
la—bl <3 for all r, 4
Sa,b)=1 forallr> /37. ()

To show (4) we may assume that r > 3/2. Thus 6(r) < 60° so |a] > [a—b|. By
Lemma 1 we then have

jal*  lalla—b|

@b oab .

cot O(r) <

< [a|*—|alla—b|+1
since d(a,b) > 1. Now Lemma 2 and the fact that |a| > ija —b| give (4).
To show (5) we first note that d(a, b) = 1 for all r > \/46. Indeed, if 6 > 1, then
o= \/ 2 and by Lemmas 1 and 2 we have
r?=3r+3 < cot 8(r) < lal?/\/2—lal/\/2+1

< rz/\/Z—r/\/2+1 ,
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which fails if r > /47. For /37 < r < /46 we have
r/J2=r//2+1 < 29 < 31 = cot (5, 1), (6, 1)),

which shows that 6 = 1 for these values of r as well.
Now 6 = 1, if, and only if, after a possible reordering of coordinates, we have

ab,—a,b; = £1, (6)
and for (i,j) # (1,2) or (2, 1)
ab;—a;b; =0. ()
In particular, if # 2 3 and 3 < j < d, then (7) yields
a;b; = a;b,, a;b, = ab;.
These equations imply that
a;b,b; = a,b,b;, a,a;b, = a,a;b, .

Combining the last equations with (6) we get that a; = b; = Ofor 3 < j < d. Thus, if
0 =1, we can assume that the vectors a and b both lie in the plane
X3 =X4=..=x;=0.

It now follows from (5) that if r > \/37, B(a,b) = O(r)and r = |a| = |b|, thenaand
b can be assumed to lie in Z2. We write a = (a,, a,) and b = (b,, b,). The condition
oa, b) = 1 implies that (6) holds. We shall assume that both a and b lie in the first
octant, since we can use (1, 1) as a vector for r = \/ 2. Since there can be no lattice
points on the interior of the line segment joining a and b, the coordinates of a—b are
relatively prime. Thus we have by (4), ]a—b| = 1, \/2, or \/5.

Using the preceding remarks and some elementary calculations we obtain the four
classes described in Theorem 1. The case ja—b| = 1 givesclass 1, thecasela—b| = \/ 2
gives class 2, and the cdse |a—b| = \/ 5 gives classes 3 and 4.

The evaluation of 6(r) for \/ 100<r< \/ 37 involves similar but somewhat more
technical arguments. In particular, we used a sharper form of Lemma 1. For r < \/ 10
we employed a direct finite search. We shall suppress the details of these calculations;
the data for these r are given in Table 1.

§3. Densities of the four classes: proof of Theorem?2. Givenavaluer > \/ 10, which
of the four classes provides a pair of vectors in S(r} n Z% of minimal positive angle? We
compute the cotangent of the smallest angle in each of the four classes and compare
their size. For each class i, let n; = n{r) denote the largest integer such that the class i
vectors for n; have length at most r; let 0,(r) denote the corresponding angle. Theorem 1
asserts that for r > /10, 0(r) = min (8,(r), 6,(r), 85(r), 04(r)).
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Table 2
Class ny (r) cot 0;(r)
1 n = [/(r*~1)] n?—n, +1
2 ny = [V —H-1] 2n3
3 ny = [P =39 -4 Snd—ny—1
4 ng = [/ —55)—1] Sni+ng—1

Letting {y} denote the fractional part of y, define

S={J0*=1}, T={J/&*-YH-1},

and

= {\/(Er —35)—3

In terms of these new variables we write

“I\/(sr -

Sil) =nt—n+1 =r—Q2S+1)/(* - 1)+ +S

ﬁm—zw—r-2Jﬂ4v®Jr—%+W+r

folr) = Sn3—ny—1

1

25

—(2/5U+//(r* =H+5U* +5U

Jalr) = Sni4ng—1 = 17 =(Q2/5V+/9 /(P = H+5V2+5V .

Each of the f’s contains an expression \/ (r* —c¢) which we replace by r+O(1/r).

Thus for r outside a negligible set we have

Si(r) > max (fz("), 1), far),

provided that

2541 < min (22T ++/2,2/5U +/5,2./5V +/5).

Similar inequalities determine when the other f’s are maximal.
We can express the densities d,, ..., d, in terms of the new variables. For example,

dy = lim Smir < x:25+1 < min V2T +/2,2\/5U+/5,2/5V +./5)}

X o X

This calculation is complicated by the fact that S, T, U, and V are not piecewise linear
r+o(l). If wesets = {r},
t = {r/\/2 —3hu = {(r/\/5)—%} and v = {(r/\/5)—2} then (8) holds with the capital

functions of r. However, they are nearly so since \/ (r*—c) =

letters replaced by the corresponding small letters.

Because of the similar form of the expressions involving u and v, it is practical to
keep these expressions together. Let w = min (u, v). For I,, I,,and I, intervalsin [0, 1)

let R = I, xI,xI;. We want to show that

def

1
P(R)= lim —m{r < x:sel,tel,,wel;}

x=00 X
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exists and calculate its value. We note that u < ©,if, and onlyif,0 < u < fandv < u,
if, and only if, 0 < v < £. (These are complementary sets!) Thus

1
PR) = lim —m{r < x:sel,tel,,uecly}

X X

o1
+ lim —m{r < x:sel,,tel,,velj

x—o X
= P, xI xI3)+P'(Iy x1, xI3),

where I5 = I, n [0, Y and I'; = I, ~ [0, %)
. Since 1, 1/\/2, 1/\/5 are linearly independent over the rationals

1 r 1 ¥ 2
"(RY = i _r
P'(R) )}er:n m{réx.lr,elx,{Tz 2}6]2,{75 5}613}

exists for each rectangle R = I, x I, x I = [0, 1)* and has value |1,||1,|/15| [3, Satz 5],
[2, §1.9]. A similar result holds for P”. If Q denotes the density function of P, then the
preceding argument shows that

2, if 0<w<i,
O(s,t,w) =31, if t<w<t,
0, if t<w<l.

Let G, denote the set of points (s, t, w) in [0,1)® satisfying

2s+1 < min (24/2t+/2,2./5w+./5).

d, = [UQ(S, t,wydsdtdw.

Gy

Then we have

Evaluating the integral we obtain the stated value of d,.

The calculation of d,proceeds similarly. If G, denotes the region in (s, ¢, w) space
where

2/2t+/2 < min 25 +1,2/5w+./5),

d, = jJJQ(s, t,w)dsdtdw.

G

then we obtain

The function value f;(r) is maximal (i.e. the vectors of minimal positive angle are in
class 3) if

2/5u+/5 < 25+1,2/5u+/5 < 2/2t+ /2, and 2/5u+/5 < 2/5v+/ 5.
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The last condition is equivalent to u < v, which is to say 0 < u < 1. As in the
calculation of d,

Pl x I, < I3) = LI |15 -

Thus the density function of P'is 1 for 0 < u < LandisOfort < u < 1,and d, is the
volume of the region in (s, t, u) space defined by
\/5 _ \/2 1
2/5 '

s 5-1 s
0<u<mln{$—ws—, st T, 5

It turns out that the condition u < 1 is satisfied automatically and can be omitted from
the last inequality.
The function f, is maximal if

2/50+/S < 25+1,2/Sv+/5 < 2/2t+./2,and 2./Sv+ /5 < 2/5u+./ 5.

The last condition is equivalent to v < u, which is to say 0 < v < £. Recalling the
discussion of d, just above, we see that the constraints are the same in both cases, except
that the irrelevant condition 0 < u < } has been replaced by the less restrictive

condition 0 < u < £. The last condition is also satisfied automatically, and we have
d4 = d3.

§4. The frequency of the four classes: proof of Theorem 3. Recall that for each
=1,...,4, Nj(x) is the number of pairs a,b in class j with 6(la]) = 6(a, b) and
> |a| = (b,

We now show N, (x) ~ x by showing the stronger result

J
x

Nyx) = [J(x*~1)] forallx>1. 9)

Clearly N,(x)1s at most equal to the number of points (n, 1) with \/ (n*+1) < x. Thus
N,(x) < [\/ (x2—1)]. To show equality, we show that for every positive integer n,

0/ (n*+1)) = 0((n—1, 1), (n, 1)). (10)

That (10) is true for small values of n can be seen by examining Table 1. With
r= \/(n2+ 1), we have in the notation of §3 that § = 0 and

filr) < max { £,(r), f3(r), fa(r)}

for all values of T, U, V (assuming r > 5). Thus (10) and hence (9) are established.
We now establish the asymptotic formula

Ny(x) ~ ¢c,x. (11
Let N, (x) denote the number of positive integers n < x/\/ 2 such that

(J2m+1) > (2-1)2.
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It follows from Weyl’'s Theorem ({3, Satz 2], [2, §1.2]) that

2-1
N’Z(x)~<1— \/2 >7x§=c2x.

Hence to show (11), it will suffice to show that N,(x) ~ N5(x). Forr = \/(an +2n+1),
we have T = 0. Hence

V2 = 22T+ /2 < min {2./5U+./5,2./5V +./5}

is satisfied for all values of U, V € [0, 1), and consequently f,(r) > max (f5(r), f,(r))
provided r > 13. Also, we have

V2 =2/2T+ /2 <25+1,

if,and only if, § > (\/ 2 —1)/2. Hence N,(x) is asymptotic to the number of n for which
J@r?+2n+1) < x and {\/(2n? +2n)} > (/2—1)/2. It follows that N,(x) ~ N(x),
which was to be shown.

Now we show that N4(x) ~ ¢y x. Ifr = \/(Snz +4n + 1) for a positive integer n, then
U =0andso V = £and f5(r) > f,(r) provided r > 3. Hence N,(x)is asymptotic to the
number of n for which \/(5n* +4n+1) < x and

V5 < min {25+1,2./2T+./2} .

It follows that N;(x) ~ Nj(x), where N%(x) is the number of n < x/\/S such that
W51 V5 il /52
{\/5(n+5)} > 3 and {75 (n+5) 50 > Wz—

Since 1, \/5, \/% are linearly independent over the rationals, it follows from the
multidimensional version of Weyl’s Theorem ([3, Satz 4], [2, §1.6]) that

s~ L) o

The same argument shows that N, {x) ~ c;x.

§5. Occurrence of ties. We noted in §1 that for \/ M <r< \/ 37 there are two
essentially different pairs of vectors for which 0(r) is attained, namely (4, 1), (5, 1) and
(3, 2), (5, 3). We show that this occurrence is rare. Let T be the set of positive numbers r
for which 6(r) is attained by two incongruent pairs of vectors. Since Theorem 2 gives
d,+d,+dy;+d, = 1, we have

() E m{r < x:reT} = o(x), (12)

i.e. the chance of a randomly chosen positive number r being in T is 0. In this section we
show that #(x) = O(log x). Although it appears likely that T is unbounded, i.e. that ties
occur infinitely often, we cannot prove this. '
Which classes can be involved in a tie? Class 2 pairs cannot tie with pairs from any
other class because, as Table 2 shows, cot 6 is even for class 2 pairs but odd for pairs
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from classes 1, 3, and 4. Next, there are no ties between class 3 and class 4 pairs since the
equation

S5n3—ny—1 = 5ni+n,—1
has no solution in positive integers n; and n,. Thus the only possibilities are a class 1-

class 3 tie and a class 1-class 4 tie.
Suppose that we have a class 1-class 4 tie for the radius r, i.e. the pairs

(n,—1,1),(n,;, 1) and (2n,—1,n,),2ns+1,n.+1)

2

determine the same angle 6(r). Then we have n?+1 < Sni+6n,+2 < r?, since

[/ 02 4+1) > fu(/(nF + 1)

as we noted in §4. Thus we may assume that r = \/ (5n+6n,+2).
The class 1—class 4 tie implies that

n—n, +1=5n2+n,—1. (13)
Moreover, since the relevant pair in class 2 does not determine 6(r), we have
2n3 < Sni+n,—1. (14)

Cohversely conditions (13) and (14) imply that there is a class 1-class 4 tie. (One must
show that (13) implies that \/((n, + 1 +1) > r.)
Letting j = 2n,—1, k = 10n,+ 1, we see that (13) is equivalent to

k?—35j% = 36. (15)
All solutions of (15) with j odd and k& = 1 (mod 10) are given by expanding
QL+9/5(161+72./5), i=..-1,0,1,2,..

as ai+b,-\/5 and then taking k; = |gj], j; = |bj]. This can be seen by noting that
11 +\/ 5) is a fundamental unit for Q(\/ 5) and that all integers in Q(x/ 5) with norm
+36 have the form +6(3(1+/5))? for I any integer. All solutions of (15) with our side
conditions and k,j > 0 will occur when [ = 2 (mod 6).

It follows that

ki = (21+9./5)161472./5)/2+(21 —9./5)161 —72,/5)/2
or
ki = [21+9./5(161 £ 72./5)/21,

where [x] = —[ —x], the least integer not below x, and the + signs are taken the same
as the sign of i. For each such k; we take n, = (k; — 1)/10; with this choice (13)is satisfied
for an appropriate n,.

Since the n,’s which satisfy (13) lie in a near geometric progression, the number of
ties achieved for all radii r < x is O(log x). Also, each r interval for which 6(r) is achieved
by a pair of class 4 vectors is of length at most 1.

The situation for ¢lass 1-class 3 ties is entirely analogous. (In fact we achieve (15)
here too, but this time require k = — 1 (mod 10). The first occurrence of a class 1—class
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3 tie is for the pairs (83, 1), (82, 1) and (73, 36), (75, 37).) Thus we have shown that
t(x) = O(log x).

We have given all the solutions of (13). To show that ties occur for angles which are
actually minimal, one must show that solutions of (13) also satisfy (14). The methods of
§3 show that (14) holds, if \/5 < 2./2t+./2+0(1), where t = {(r/\/2)—1}. This time,
however, r is determined as a member of a near geometric progression, and we cannot
assert that the ¢’s are uniformly distributed as r — oo through such a sequence. If the
distribution is uniform in this case, then an arbitrary solution of (13) will yield a tie with
probability 1 —(\/5 — \/ 2)/(2\/ 2) = 0:709431. In fact, assuming uniform distribution,
we have t(x) ~ ¢ log x for an appropriate positive constant c.

Table 3. Data

Maximal Asymptotic Number of Total Length
Norm Direction Occurrences* Length* Distribution*

58-69 (1,0) 58 4249 -7240

1,1 31 12:29 2094

2,1-) 6 119 0203

2,1+4) 7 124 0211

other 4 1-08 0184

114 (1,0) 113 8392 7361

(1, 1) 62 24-07 2111

2,1-) 14 243 0213

(2,1+) 14 2-49 -0218

other 4 1-08 0095

22494 (1,0) 224 166-45 7400

(1,1 124 4824 2145

2,1-) 28 4-53 0201

2,1+) 27 4-63 -0206

other 4 1-08 0048

447 (1,0) 446 33218 7431

1,1 249 95-84 2144

(2,1-) 55 916 0205

(2, 1+) 53 875 0196

other 4 1-08 0024

*ties are counted with multiplicity
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