
COPRIME PERMUTATIONS

CARL POMERANCE

Abstract. Let C(n) denote the number of permutations σ of
[n] = {1, 2, . . . , n} such that gcd(j, σ(j)) = 1 for each j ∈ [n]. We
prove that for n sufficiently large, n!/3.73n < C(n) < n!/2.5n.

1. Introduction

Several papers, some recent, have dealt with coprime matchings be-
tween two sets of n consecutive integers; that is a matching where
corresponding pairs are coprime. For example in a paper [12] with Sel-
fridge, we showed such a matching always exist if one of the intervals is
[n] = {1, 2, . . . , n}. In Bohman and Peng [2] it is shown that a match-
ing always exists if n is even and the numbers involved are not too large
as a function of n, with an interesting application to the lonely runner
problem in Diophantine approximations. Their result was somewhat
strengthened in [11].

The current paper considers the situation when both intervals are
[n]. In this case it is trivial that a coprime matching exists, just take
the cyclic permutation (1, 2, . . . , n). So instead we consider the enu-
meration problem. Let C(n) denote the number of permutations σ of
[n] where gcd(j, σ(j)) = 1 for each j ∈ [n]. This problem was con-
sidered in Jackson [5] where C(n) was enumerated for n ≤ 24. For
example,

C(24) = 1,142,807,773,593,600.

After factoring his values, Jackson notes the appearance of sporadically
large primes, which indicates there may not be a simple formula. The
sequence also has an OEIS page, see [9], where the value of C(25),
due to A. P. Heinz, is presented (and the value for C(16) is corrected).
There are also links to further computations, especially those of Locke.
In Section 6 we discuss how C(n) can be computed and verify Locke’s
values.
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Our principal result is the following.

Theorem 1. For all large n, n!/3.73n < C(n) < n!/2.5n.

Important in the proof of the lower bound is a numerically explicit
estimation of the distribution function for ϕ(n)/n, where ϕ is Euler’s
function.

It would seem likely that there is a constant c with 2.5 ≤ c ≤ 3.73
with C(n) = n!/(c + o(1))n as n → ∞. In Section 5 we give some
thoughts towards this possibility. (After a draft of this paper was
posted on arXiv, Ashwin Sah and Mehtaab Sawhney, using different
methods, have proved this, with the constant c = c0 = 2.65044 . . . that
is identified in sub-section 5.1.)

In Section 6 we discuss the numerical calculation of C(n). Finally,
in Section 7 we discuss the number of permutations σ of [n] where
σ(1) = 1 and for 2 ≤ j ≤ n, gcd(j, σ(j)) > 1. It is possible here that
the number of them is O(n!/Cn) for every fixed C.

2. Preliminaries

Regarding notation, we have

[n] = {1, 2, . . . , n}, [n]o = {1, 3, . . . , 2n− 1}.
Thus, [n]o is the set of the first n odd positive integers. Let C0(n)
denote the number of one-to-one functions

f : [n]o −→ [n]

such that each gcd(i, f(i)) = 1. Similarly, let C1(n) denote the number
of one-to-one functions

f : [n] −→ [n+ 1]o

such that each gcd(i, f(i)) = 1.

Lemma 1. We have C(2n) = C0(n)2 and for n ≥ 2, 2C0(n − 1)2 ≤
C(2n+ 1) ≤ C1(n)2.

Proof. Let σ be a coprime permutation of [2n]. Then σ maps evens
to odds and odds to evens, so that σ corresponds to a pair of coprime
matchings σ0, σ1 where σ0 maps {2, 4, . . . , 2n} to {1, 3, . . . , 2n−1} and
σ1 maps {1, 3, . . . , 2n−1} to {2, 4, . . . , 2n}. Then f(2i−1) = 1

2
σ1(2i−1)

is one of the maps counted by C0(n) and so is g(2i−1) = 1
2
σ−10 (2i−1).

Conversely, each such pair of maps corresponds to a coprime permuta-
tion σ of [2n]. This proves that C(2n) = C0(n)2.

The upper bound for C(2n + 1) follows in the same way. Let σ be
a coprime permutation of [2n + 1] and let σ0 be σ restricted to even
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numbers. Then define fσ(i) = σ0(2i), so that fσ is one of the functions
counted by C1(n). Note that there is some a ∈ {1, 3, . . . , 2n+ 1} with
σ(a) odd, but all other members b of {1, 3, . . . , 2n+ 1} have σ(b) even.
Let σ1 be σ restricted to Sa,n := [n + 1]o \ {a} and let gσ(2i − 1) =
1
2
σ1(2i − 1) for i ∈ Sa,n. Then g−1σ is one of the functions counted by
C1(n). Note that if τ is a coprime permutation of [2n + 1] such that
fτ = fσ and gτ = gσ, then τ = σ. This proves that C(2n+1) ≤ C1(n)2.
Note that the proof ignores the condition gcd(a, σ(a)) = 1, so it only
gives an upper bound.

For the lower bound, note that C(2n + 1) ≥ 2C(2n − 2). Indeed,
corresponding to a coprime permutation of [2n−2] we augment it with
either the cycle (2n − 1, 2n, 2n + 1) or its inverse, giving two coprime
permutations of [2n+ 1]. The lower bound in the lemma for C(2n+ 1)
now follows from the first part of the lemma. �

We remark that the sequence C(1), C(2), . . . is not monotone, but
it is monotone restricted to integers of the same parity. Indeed, aug-
menting a coprime permutation of [n] with the cycle (n+1, n+2) gives
a coprime permutation of [n+ 2], so that C(n) ≤ C(n+ 2).

Since C0(n) ≤ n! and C1(n) ≤ (n+ 1)!, Lemma 1 immediately gives
us that C(2n) ≤ (n!)2 and C(2n+1) ≤ (n+1)!2. With Stirling’s formula
this gives C(n) ≤ n!/(2 + o(1))n as n → ∞. Note that this argument
considers only parity. By bringing in 3, 5, etc., we can improve this
upper bound. In Section 5 we begin this process and show that C(n) <
n!/(5/2)n for all large n.

It is much harder to get a comparable lower bound for C(n), and
this is our undertaking in the next two sections. From the thoughts
above it suffices to get a lower bound for C0(n). The lower bound in
Theorem 1 is a consequence of the following result.

Theorem 2. For all large n, C0(n) ≥ n!/1.864n.

3. The distribution function

Let ω(n) denote the number of distinct prime factors of n.

Lemma 2. For positive integers m,n, the number of j ≤ n with
gcd(j,m) = 1 is within 2ω(m)−1 of (ϕ(m)/m)n.

Proof. The result is clear if m = 1, so assume that m > 1. With µ the
Möbius function, the exact number of j’s is∑

d|m

∑
j≤n
d|j

µ(d) =
∑
d|m

(
µ(d)

d
n+ µ(d)θd

)
,
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where 0 ≤ θd < 1. The sum of the main terms is (ϕ(m)/m)n. There
are 2ω(m) error terms µ(d)θd with µ(d) 6= 0, and since m > 1, half of
them are ≥ 0 and half are ≤ 0. So the sum of the error terms has
absolute magnitude < 2ω(m)−1. �

Corollary 1. For m ≤ n, the number of j ≤ n with gcd(j,m) = 1 is
greater than (ϕ(m)/m)n−

√
n.

Proof. A short induction argument shows that
√
m > 2ω(m)−1, so the

result follows directly from the lemma. �

Lemma 3. For all large n we have∑
m<2n
m odd

(
m

ϕ(m)

)2

< 1.78n.

Proof. Define a multiplicative function h with h(p) = (2p− 1)/(p− 1)2

for each prime p and h(pa) = 0 for a ≥ 2. Then∑
m<2n
m odd

(
m

ϕ(m)

)2

=
∑
m<2n
m odd

∑
d|m

h(d)

=
∑
d<2n
d odd

h(d)
∑

j<2n/d
j odd

1 =
∑
d<2n
d odd

h(d)
(n
d

+O(1)
)
.

The main term is

< n
∏
p>2

(
1 +

2p− 1

(p− 1)2p

)
,

and this infinite product converges to a constant smaller than 1.7725.
For the error term a simple calculation shows that it is O((log n)2), so
our conclusion follows. �

Let δϕ(α) be the distribution function for ϕ(m)/m; that is, for 0 ≤
α ≤ 1,

δϕ(α) = lim
n→∞

1

n

∑
m≤n

ϕ(m)/m≤α

1.

It is known after various papers of Schoenberg, Behrend, Chowla,
Erdős, and Erdős–Wintner that the limit exists, δϕ(0) = 0, δϕ(1) = 1,
and δϕ is strictly increasing and continuous. In addition, at a dense
set of numbers in [0, 1], namely the values of ϕ(m)/m, the distribution
function δϕ has an infinite left derivative. This all can be generalized



COPRIME PERMUTATIONS 5

to odd numbers. For 0 ≤ α ≤ 1, let D(α, n) denote the number of odd
m < 2n with ϕ(m)/m ≤ α. As with δϕ,

δ(α) := lim
n→∞

D(α, n)/n

exists, with δ continuous and strictly increasing on [0, 1], with δ(0) = 0
and δ(1) = 1. By extending it to take the value 1 when α > 1, we have

δϕ(α) =
1

2
(δ(α) + δ(2α)),

as noted in [12]. In particular, for 1
2
≤ α ≤ 1,

(1) δ(α) = 2δϕ(α)− 1.

A consequence of the argument in [12] is that δ(α) ≤ α on [0, 1]. We
shall need a somewhat stronger version of this inequality. In particular,
note that Lemma 3 immediately gives

(2) δ(α) < 1.78α2,

which is stronger than δ(α) ≤ α for α < 1/2. It is certainly possible to
get improvements on (2) by averaging higher moments of m/ϕ(m), as
was done in [6], which would lead to small improvements on our lower
bound for C(n).

We shall also need some estimates for δ(α) when α is close to 1, and
for this we use an argument of Erdős [3, Theorem 3]. There he shows,
essentially, that 1−δ(1−ε) ∼ 2/(eγ| log ε|) as ε→ 0, where γ is Euler’s
constant. We will need an estimate with somewhat more precision.

Let

δ(α, n) =
1

n
D(α, n), M(x) =

∏
3≤p≤x

(
1− 1

p

)
, sj,x =

∑
4j−1x<p≤4jx

1

p
.

Lemma 4. Uniformly for 2 ≤ x ≤ log n we have

1− δ(1− 1/x, n) ≤M(x)− 1/
√
n

and

1− δ(1−1/x, n) ≥M(2x)

(
1−

∑
j≥1

sj+1
j,2x

(j + 1)!

)
+O

(
1

(log n)log log logn

)
.

Proof. Note that 1 − δ(1 − 1/x, n) denotes the fraction of numbers
m < 2n with ϕ(m)/m > 1 − 1/x (all such m are odd). In fact, such
numbers are not divisible by any prime p ≤ x, which with Lemma 2
gives the upper bound.

For the lower bound we count the numbers m < 2n that are not
divisible by any prime p ≤ 2x and also divisible by at most j distinct
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primes from each interval Ij := (4j−1 · 2x, 4j · 2x]. Indeed, if m is such
a number, then

ϕ(m)

m
>
∏
j≥1

(
1− 1

4j−1 · 2x

)j
> 1−

∑
j≥1

j

4j−1 · 2x
= 1− 8

9x
.

LetAj be the set of products of j+1 distinct primes from Ij. For a ∈ Aj,
the number of odd numbers m < 2n with a | m and m not divisible by
any prime to 2x, is by Lemma 2, within 2π(2x)−1 of M(2x)n/a. Note
too that the sum of 1/a for a ∈ Aj is at most sj+1

j,2x/(j + 1)!, by the
multinomial theorem. Let π(Ij) denote the number of primes in Ij.
Thus, the number of odd m < 2n not divisible by any prime to 2x and
divisible by some a ∈ Aj is uniformly

M(2x)nsj+1
j,2x/(j + 1)! +O

(
2π(2x)

(
π(Ij)

j + 1

))
.

The binomial coefficient here is bounded by O(4j(j+1)xj+1) using only
that π(Ij) < 4jx. Note that for j ≤ log log n this expression is Oε(n

ε)
for any ε > 0, as is 2π(2x), so that the number of integers m < 2n
not divisible by any prime p ≤ 2x yet divisible by some a ∈ Aj for
j ≤ log log n is at least

M(2x)n
∑

j≤log logn

sj+1
j,2x

(j + 1)!
+O(n1/2).

Thus,

n−D(1− 1/x, n) ≥M(2x)n

(
1−

∑
j≤log logn

sj+1
j,2x

(j + 1)!

)

− 2n
∑

j>log logn

sj+1
j,2x

(j + 1)!
+O(n1/2).

Since sj,2x = O(1/j), we have∑
j>log logn

sj+1
j,2x

(j + 1)!
= O(1/(log n)log log logn).

Thus, our count is

≥M(2x)n

(
1−

∑
j≥1

sj+1
j,2x

(j + 1)!

)
+O(n/(log n)log log logn),

which gives our lower bound. �
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Corollary 2. Uniformly for 2 ≤ x ≤ log n, we have as n→∞,

1− δ(1− 1/x, n) ≤ 2

eγ log x

(
1 +

1

2(log x)2
+ o(1)

)
.

Further, for 150 ≤ x ≤ log n and n sufficiently large,

1− δ(1− 1/x, n) ≥ 2

eγ log(2x)

(
1− 7

4(log(2x))2

)
.

Proof. By Rosser and Schoenfeld [13, (3.26)] we have

M(x) <
2

eγ log x

(
1 +

1

2(log x)2

)
,

so our first assertion follows from the first part of Lemma 4. Further,
using [13, (3.25)] we have

M(2x) >
2

eγ log(2x)

(
1− 1

2(log(2x))2

)
,

and so the second part our our assertion will follow from Lemma 4 if
we show ∑

j≥1

sj+1
j,2x

(j + 1)!
<

1.4

(log(2x))2

for all sufficiently large x, noting that 1.4 < (2/eγ)1.25. Using [13,
(3.17),(3.18)], we have

sj,2x < log log(2 · 4jx)− log log(2 · 4j−1x) +
1

(log(2 · 4j−1x))2

<
log 4

log(2 · 4j−1x)
+

1

(log(2 · 4j−1x))2
≤ log 4

log(2x)
+

1

(log(2x))2
=: s.

Thus, using x ≥ 150,

∑
j≥1

sj+1
j,2x

(j + 1)!
< es − 1− s < 0.55s2

and s2 < 2.5/(log(2x))2, so our claim follows. �

In addition, we shall use the following numerical bounds. The first
of these follows from Kobayashi [7], the last two from Lemma 4, and
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the others from Wall [15].

0.02240 < δ(0.5) < 0.02352,

0.1160 < δ(0.6) < 0.1624,

0.3556 < δ(0.7) < 0.3794,

0.4808 < δ(0.8) < 0.5120,

0.5644 < δ(0.9) < 0.6310

0.7593 < δ(0.99) < 0.7949

0.8380 < δ(0.999) < 0.8539.

(3)

4. The lower bound

We partition (0, 1] into consecutive intervals

(α0, α1], (α1, α2], . . . , (αk−1, αk], where 0 = α0 < α1 < · · · < αk = 1.

The parameter k will depend gently on n, namely k = O(log log n).
The partition of (0, 1] will correspond to a partition of [n] into subsets
as follows. For j = 0, 1, . . . , k − 1, let

Sj =
{
m ∈ {1, 3, . . . , 2n− 1} : αj < ϕ(m)/m ≤ αj+1

}
.

In getting a lower bound for C0(n), we show that there are many ways
to assign coprime companions for each member m of {1, 3, . . . , 2n− 1}
that do not overlap with the choices for other values of m. In particular,
we organize the odd numbers m < 2n by increasing size of ϕ(m)/m,
and so organize them into the sets S1, S2, . . . . In particular, we will
choose the parameters αj in such a way that there are more ways to
assign coprime companions for m ∈ Sj than there are members in all
of the sets Si for i ≤ j combined.

For an odd numberm < 2n let F (m,n) denote the number of integers
in [n] coprime to m. Suppose 0 < α < β < 1 and we wish to find
coprime assignments for members of

S = {m odd : m < 2n, ϕ(m)/m ∈ (α, β]} = {m1,m2, . . . ,mt},

where t = #S = D(β, n)−D(α, n). Let M = dαn−
√
ne, so that for

each m ∈ S we have F (m,n) ≥M , via Corollary 1. Assume that those
odd m < 2n with φ(m)/m ≤ α already have their coprime assignments.
Then m1 can be assigned to at least M −D(α, n) numbers in [n], m2

can be assigned to at least M − 1−D(α, n) numbers in [n], etc. In all,
the numbers in S have at least

(4)
(M −D(α, n))!

(M −D(α, n)−#S)!
=

(M −D(α, n))!

(M −D(β, n))!
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coprime assignments that do not interfere with those for ϕ(m)/m ≤ α.
If 0 < a < b < 1 and an, bn are integers, then

(an− bn)! = exp((a− b)n(log n− 1) + (a− b)n log(a− b) +O(log n)).

Let f(x) = x log x. Thus, the expression in (4) is equal to

exp((δ(β, n)− δ(α, n))n(log n− 1) + E(α, β, n)n+O(log n)),

where

E(α, β, n) = f(α− δ(α, n))− f(α− δ(β, n)).

We thus will have that C0(n) ≥ n! exp (nE +O(k log n)), where

(5) E =
∑

1≤i≤k−1

(f(αi − δ(αi, n))− f(αi − δ(αi+1, n))).

(We will choose α1 = 1/ log log n and for n sufficiently large, every
odd m < 2n will have ϕ(m)/m > α1, so the interval (0, α1] does not
contribute.)

The sum in (5) is almost telescoping. In particular the density
δ(αi+1, n) when 1 ≤ i ≤ k − 2 appears twice, the two f -values be-
ing

−f(αi − δ(αi+1, n)) + f(αi+1 − δ(αi+1, n)).

We do not have a completely accurate evaluation for δ(αi+1, n) nor for
the limiting value of δ(αi+1), but we do have a fairly narrow interval
where this limit lives. Note that the expression

−f(αi − x) + f(αi+1 − x)

is decreasing in x when 0 < x < αi, so if we use an upper bound for
δ(αi+1, n) in (5), we will get a lower bound for the sum.

4.1. The interval (0, 1/2]. Let j0 be the least integer with 2j0 >
log log n and let α1 = 1/2j0 . Further, let αj = 2j−1α1 = 1/2j0−j+1,
for j ≤ j0. This gives the first part of our partition of (0, 1], namely
the sets (αj, αj+1] for j ≤ j0 give a partition of (0, 1/2].

Using (2) and the upper bound for δ(1/2) in (3), we have

δ(1/2i, n) ≤ min{1.78/4i, 0.02352}

for all i and all large n. We find the E-sum from (5) for the portion for
(0, 1/2] is > −0.0538. So the contribution for this part of the count is
greater than

(6) exp
(
D(1/4, n)(log n− 1)− 0.0538n

)
for all large n.
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4.2. The interval (1/2, 0.999]. We split the interval (1/2, 0.999] at

0.6, 0.7, 0.8, 0.9, 0.99.

Using the upper bounds for our various densities from (3), we have the
E-sum from (5) is

f(.5− .02352)− f(0.5− .1624) + f(.6− .1624)− f(.6− .3794)

+ f(.7− .3794)− f(.7− .5120) + f(.8− .5120)− f(.8− .6310)

+ f(.9− .6310)− f(.9− .7949) + f(.99− .7949)− f(.99− .8539)

> −0.2873.

Thus, the contribution from (1/2, 0.999] is greater than

(7) exp
(
(D(0.999, n)−D(1/4, n)(log n− 1)− 0.2873n

)
for all large n.

4.3. The interval (0.999, 1−1/ log n]. Let j1 be the least integer with
10j1 > log n. Let εi = 10−i. We deal with the intervals

(1− εi−1, 1− εi] for 4 ≤ i ≤ j1 − 1.

For our argument to work we will need to show that D(1 − εi, n) <
(1− εi−1)n−

√
n, that is,

(8) εi−1n−
√
n < n−D(1− εi, n) for i ≥ 4.

From Corollary 2 we have

n−D(1− εi, n) >
2n

eγ log(2/εi)

(
1− 7

4(log(2/εi))2

)
.

Note that log(2/εi) = log 2+i log 10, so that an expression of magnitude
1/ log(2/εi) is much larger than εi−1 when i ≥ 4, so we have (8).

We now compute the contribution from the intervals (1− εi−1, 1− εi]
for i = 4, 5, . . . , j1 − 1. This is at least

exp(D(1− εj1−1, n)−D(0.999, n)(log n− 1) + En),

where

E =
∑

4≤i≤j1−1

f(1− εi−1 − δ(1− εi−1, n)− f(1− εi−1 − δ(1− εi, n)).

Using our bound 0.8539 for δ(0.999) from (3) and Corollary 2 for δ(1−
εi) for i ≥ 4, we have E > −0.2814, so the contribution for all large n
is at least

exp((D(1− εj1−1, n)−D(0.999, n))(log n− 1)− 0.2814n).
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The final interval (1− εj1−1, 1− 1/ log n] contributes

exp(D(1− 1/ log n, n)−D(1− εj1−1, n)(log n− 1) +O(n/ log log n)),

so our total contribution from (.999, 1− 1/ log n] is at least

(9) exp((D(1− 1/ log n, n)−D(0.999, n)(log n− 1)− 0.2815n)

for all large n.

4.4. The interval (1−1/ log n, 1]. We break this interval at 1−1/
√

2n.
It is evident that if m < 2n is odd and ϕ(m)/m > 1 − 1/

√
2n, then

m = 1 or m is a prime in the interval (
√

2n, 2n). Thus,

(10) D(1− 1/
√

2n, n) = n− 2n/ log n+O(n/(log n)2)

by the prime number theorem. Thus, δ(1 − 1/
√

2n, n) < 1 − 1/ log n
for all large n. A calculation shows that the contribution is at least

exp

((
D
(
1− 1√

2n
, n
)
−D

(
1− 1

log n
, n
))

(log n− 1) + E

)
,

where E = O(n log log log n/ log log n), this term coming from f(1 −
1/ log n− δ(1− 1/ log n, n)).

For the final interval, we have already noted that the numbers in [n]o
remaining are 1 and the primes in (

√
2n, 2n). We follow the argument

in [12, Proposition 1]. Label the primes in (
√

2n, 2n) in decreasing
order p1, p2, . . . , pt, so that, by (10), t = 2n/ log n + O(n/(log n)2).
Each pi has < 2n/pi multiples to 2n, of which < n/pi + 1/2 are odd.
Let u = bt/2c = n/ log n + O(n/(log n)2), so that pu ∼ n. We count
assignments for pi for i = t, t − 1, . . . , u in order. At each i there are
i + 1 numbers remaining to be associated with pi of which at most
n/pi + 1/2 are multiples of pi. So, there are at least i −

√
n coprime

choices for pi’s assignment. Multiplying these counts, we have at least

(u−
√
n)u = exp(n+O(n/ log n)

choices. For each of the remaining primes pi there are i + 1 numbers
left as possible assignments, with at most one of these divisible by
(actually, equal to) pi. So the contribution of these primes is (u−1)! =
exp(n+O(n/ log n)). The final number to assign is 1, and it goes freely
to the remaining number left. So for this interval we have at least

exp(2n+O(n/log n))

possibilities. By (10) the count can be rewritten as

exp

((
n−D

(
1− 1√

2n
, n
))

(log n− 1) +O
( n

log n

))
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With the prior calculation, we have at least

(11) exp((n−D(1− 1/ log n, n)(log n− 1) +O(n log log log n/ log n))

assignments.
To conclude the proof we multiply the expressions in (6), (7), (9),

and (11), getting at least

exp(n(log n− 1)− 0.6226n)

coprime matchings from [n]o to [n] for all large n. Since e0.6226 > 1.8637,
this completes the proof of the lower bound in Theorem 2.

5. The upper bound and a conjecture

For each integer k ≥ 2, let Ck(n) denote the number of permutations
σ of [n] where gcd(j, σ(j), k!) = 1 for each j ∈ [n]. Thus, C(n) ≤ Ck(n)
for every k. In fact, C(n) = Ck(n) when k ≥ n, but we are interested
here in the situation when k is fixed and n is large. We claim that
for each fixed k ≥ 2 there is a positive constant ck such that Ck(n) =
n!/(ck + o(1))n as n→∞.

Here is a possible plan for the proof of this claim. Let K be the
product of the primes to k. If dd′ | K, then one can count the num-
ber of m ∈ [n] with gcd(m,K) = d that get mapped to an m′ with
gcd(m′, K) = d′. The product of all of the positive counts is nO(1), so
basically, up to a factor of this shape, the number of permutations is
given by those with one optimal suite of counts.

Let Id be the set of m with gcd(m,K) = d and let β(d, d′) be the
proportion of members of Id that get sent to Id′ by a given permutation.
Then for a fixed d, the numbers β(d, d′) have sum 1 for d′ | K/d, and
sum 1 for a fixed d′ and d | K/d′. One can start with some suite of
proportions β(d, d′) that are “legal” and consider permutations which
approximate these proportions, and see the count as some complicated,
but continuous function of the variables β(d, d′). So, there is an optimal
suite of proportions, via calculus, and this gives rise to ck.

Assume that ck exists. Note that the sequence (ck) is monotone
nondecreasing and that if p < p′ are consecutive primes, then ck = cp
for p ≤ k < p′. It follows from our lower bound for C(n) that the
numbers ck are bounded above. Let c0 = limk→∞ ck.

Conjecture 1. We have C(n) = n!/(c0 + o(1))n as n→∞.

We now prove for k = 2, 3, 5 that ck exists and we compute it. Our
value for c5 gives our upper bound theorem for C(n).

The results in Section 2 largely carry over in the case k = 2. Indeed,
note that C0(n) ≤ n! and C1(n) ≤ (n + 1)!, so that C(2n) ≤ n!2 and



COPRIME PERMUTATIONS 13

C(2n + 1) ≤ (n + 1)!2. From this we immediately get that C2(n) ≤
n!/(2 + o(1))n as n→∞. In fact, from the proof of Lemma 1 we have
C2(2n) = n!2 and C2(2n+ 1) = (n+ 1)!2, so that c2 = 2.

For k = 3, we first deal with 6n and count one-to-one functions
σ from {1, 2, . . . , 3n} to {1, 3, . . . , 6n − 1} that map multiples of 3 to
non-multiples of 3. There are precisely (2n)!2/n! of them, so C3(6n) =
((2n)!2/n!)2. Similarly we get C3(6n + 3) = ((2n + 1)!2/(n + 1)!)2, so
these two formulas lead to C3(n) = n!/(3/21/3 + o(1)) as n→∞ with
3 | n. To get to other cases, note that C3(n) ≤ C3(n + 2) for all n,
so we can sandwich n between 2 consecutive multiples of 3 and absorb
the error in the “o(1)”. We thus have

c3 = 2−1/33 = 2.381101 . . . .

The case k = 5 is considerably harder. We only treat multiples of 30,
the case 15 (mod 30) is similar, and since Ck(n) ≤ Ck(n + 2), we can
extend to all n readily. The problem is reduced to counting matchings
from [15n] to [15n]o where corresponding terms have gcd coprime to
15. We split [15n] into the n multiples of 15, the 2n numbers that
are divisible by 5 but not 3, the 4n numbers divisible by 3 but not
5, and the 8n numbers coprime to 15. We have the corresponding
decomposition for {1, 3, . . . , 30n− 1}. The first group consisting of the
multiples of 15 must be mapped to the numbers coprime to 15, and
this can be done in

(8n)!

(7n)!

ways. The next case we consider is the 2n multiples of 5 but not 3.
They must be mapped to the numbers coprime to 5, where some of
them are mapped to numbers coprime to 15 and the rest of them are
mapped to numbers divisible by 3 but not 5. A calculation shows that
the most numerous case is when it is half and half, also considering the
next step which is to place the multiples of 3 but not 5. So the total
will be within a factor 2n of this most numerous case, which has(

2n

n

)
(7n)!

(6n)!

(4n)!

(3n)!

matchings. For the multiples of 3 but not 5, these are mapped into the
union of the remaining 6n numbers coprime to 15 and the 2n numbers
divisible by 5 but not 3, for a total of

(8n)!

(4n)!
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matchings. The remaining 8n numbers are all coprime to 15 and can
be mapped to the remaining 8n numbers in every possible way, giving
(8n)! matchings. In all we thus have

(8n)!

(7n)!

(
2n

n

)
(7n)!

(6n)!

(4n)!

(3n)!

(8n)!

(4n)!
(8n)!nO(1) =

(8n)!3(2n)!

(6n)!(3n)!n!2
nO(1)

matchings. The log of this expression is within O(log n) of

= exp(15n(log n− 1) + (24 log 8 + 2 log 2− 6 log 6− 3 log 3)n).

Our count is then squared and (30n)! is factored out, giving

(30n)! exp((136 log 2− 18 log 3− 30 log 30)n+O(log n)).

This then gives that

C5(n) = (n!/cn5 )nO(1),

where

c5 = exp
(
− 53

15
log 2 +

8

5
log 3 + log 5

)
= 2−53/1538/55 = 2.504521 . . . .

5.1. A possible value for c0. Nathan McNew has suggested the fol-
lowing argument. First, for a prime p, let Np(n) be the number of
permutations σ of [n] with each gcd(j, σ(j), p) = 1. So the constraint
is that the multiples of p get mapped to the non-multiples of p, and so
we have

Np(n) =
(b(1− 1/p)nc!)2

b(1− 2/p)nc!
nO(1).

Then, up to a factor nO(1), we have

n!

Np(n)
=

(
p(p− 2)1−2/p

(p− 1)2(1−1/p)

)n
,

which suggests by independence that

ck =
∏
p≤k

p(p− 2)1−2/p

(p− 1)2(1−1/p)
.

(We the factor at p = 2 as 2.) This expression agrees with our compu-
tation of ck for k up to 5. And it suggests that c0 is the infinite product
over all primes p, so that c0 = 2.65044 . . . .
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Table 1. Values of C0(n) =
√
C(2n) and r2n.

n C0(n) r2n
1 1 1.4142
2 2 1.5651
3 4 1.8860
4 18 1.8276
5 60 1.9969
6 252 2.1044
7 1,860 2.0625
8 9,552 2.1629
9 59,616 2.2260

10 565,920 2.2082
11 4,051,872 2.2707
12 33,805,440 2.3118
13 465,239,808 2.2727
14 4,294,865,664 2.3171
15 35,413,136,640 2.3850
16 768,372,168,960 2.3122
17 8,757,710,173,440 2.3451
18 79,772,814,777,600 2.4122
19 1,986,906,367,584,000 2.3531
20 22,082,635,812,268,800 2.4029
21 280,886,415,019,776,000 2.4374
22 7,683,780,010,315,046,400 2.3905
23 102,400,084,005,498,547,200 2.4278
24 1,774,705,488,555,494,476,800 2.4401
25 40,301,474,964,335,327,232,000 2.4291

6. Computing C(n)

In this section we discuss the numerical computation of C(n) for
modest values of n. In [9] it is remarked that C(n) has been com-
puted to n = 30 by Seiichi Manyama, and extended to n = 50 by
Stephen Locke, see https://oeis.org/A005326/b005326.txt. We have
verified these values using the methods of this section and Mathemat-
ica.

As is easy to see, the permanent of the incidence matrix of a bipartite
graph of two n-sets gives the number of perfect matchings contained in
the graph. Let B(n) be the n×n “coprime matrix”, where B(n)i,j = 1
when i, j are coprime and 0 otherwise. So, in particular, and as noted
by Jackson [5],

(12) C(n) = perm(B(n)).
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However, it is not so simple to compute a large permanent, though we
do have some algorithms that are better than brute force, for example
[14] and [1].

Recall from Lemma 1 that C(2n) = C0(n)2, where C0(n) is the
number of coprime matchings between [n] and [n]o. Thus, C(2n) can
be obtained from an n × n permanent, which is considerably easier
than the more naive 2n × 2n permanent required when applying (12)
to C(2n).

There is a similar reduction for computing C(2n+ 1). For each a ∈
[n + 1]o, let C(a)(n) denote the number of coprime matchings between
[n] and [n+ 1]o \ {a}. Then C1(n) =

∑
a∈[n+1]o

C(a)(n) and

C(2n+ 1) =
∑

a∈[n+1]o

∑
b∈[n+1]o
gcd(a,b)=1

C(a)(n)C(b)(n).

Thus, C(2n+ 1) can be easily computed from n+ 1 permanents of size
n× n.

Let rn = (n!/C(n))1/n, so that C(n) = n!/rnn. We have shown that
for all large n we have 2.5 < rn < 3.73. In the following tables we
have computed the actual values of rn for n ≤ 50 rounded to 4 decimal
places.

It is easy to see that C0(n) is the number of partitions of [2n] into
coprime unordered pairs. This has its own OEIS page: A009679, and
has been enumerated there up to n = 30.

7. Anti-coprime permutations

One might also wish to consider permutations σ of [n] where each
gcd(j, σ(j)) > 1. Of course, none exist, since 1 ∈ [n]. Instead we can
count the number A(n) where gcd(j, σ(j)) > 1 for 2 ≤ j ≤ n. This
seems like an interesting problem. We can prove the following lower
bound.

Proposition 1. As n→∞, we have

(13) A(n) ≥ n!/ exp((e−γ + o(1))n log log n).

We sketch the proof. Let εn = 1/
√

log log n and let g(x) =
∏

p<x(1−
1/p), so that g(x) is similar to the function M(x) we considered earlier.
For each prime p < nεn consider the set Ln(p) of integers m ≤ n with
least prime factor p, and let

λ(p, n) =
1

n
#Ln(p).
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Table 2. Values of C(n) for n odd and rn.

n C(n) rn
1 1 1
3 3 1.2599
5 28 1.3378
7 256 1.5307
9 3,600 1.6696

11 129,774 1.6834
13 3,521,232 1.7776
15 60,891,840 1.9444
17 8,048,712,960 1.8761
19 425,476,094,976 1.9372
21 12,474,417,291,264 2.0648
23 2,778,580,249,611,264 2.0090
25 172,593,628,397,420,544 2.0804
27 17,730,530,614,153,986,048 2.1159
29 4,988,322,633,552,214,818,816 2.0841
31 427,259,978,841,815,654,400,000 2.1466
33 57,266,563,000,754,880,493,977,600 2.1818
35 14,786,097,120,330,296,843,693,260,800 2.1798
37 3,004,050,753,199,657,126,879,764,480,000 2.1988
39 536,232,134,065,318,935,894,365,552,640,000 2.2295
41 274,431,790,155,416,580,402,144,584,785,920,000 2.2058
43 51,681,608,012,142,138,983,265,921,023,262,720,000 2.2409
45 7,417,723,304,411,612,192,092,096,851,178,291,200,000 2.2918
47 7,896,338,788,322,918,879,731,318,625,512,774,041,600,000 2.2459
49 1,989,208,671,980,285,257,956,064,090,726,080,876,380,160,000 2.2743

Note that ⋃
p<nεn

Ln(p)

is the set of integers with least prime factor < nεn , so the number of
integers m ≤ n not in this union is O(n/(εn log n)). In particular,

(14)
∑
p<nεn

λ(p, n) = 1 +O(1/(εn log n)).

Each of the (#Ln(p))! permutations of Ln(p) is anti-coprime, and
gluing these together for p < nεn and having the remaining elements
of [n] as fixed points, gives an anti-coprime permutation of [n]. So we
have

A(n) ≥
∏
p<nεn

(#Ln(p))!.
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Thus, by the inequality k! > (k/e)k,

A(n) ≥ exp

(∑
p<nεn

λ(p, n)n(log n+ log(λ(p, n))− 1)

)

= exp

(∑
p<nεn

λ(p, n)n(log n− 1) + nE

)
where

E =
∑
p<nεn

λ(p, n) log(λ(p, n)).

Note that by (14)∑
p<nεn

λ(p, n)n(log n− 1) = n log n+O(n/εn).

To deal with E, we have that for p < n1/εn ,

λ(p, n) =
g(p)

p
(1 +O(e−1/εn))

uniformly for large n. Indeed each m ∈ Ln(p) is of the form pk where
k ≤ n/p is an integer not divisible by any prime q < p. Such integers
k are easily counted by the fundamental lemma of either Brun’s or
Selberg’s sieve, which gives the above estimate.

We have g(p) of magnitude 1/ log p, in fact g(p) = 1/(eγ log p)(1 +
O(1/ log p)). Thus, we have

E =
∑
p<nεn

g(p)

p
(log(g(p)/p)(1 +O(e−1/εn))

=
∑
p<nεn

1

eγp log p
(− log p− log log p− γ)(1 +O(1/ log p) +O(e−1/εn))

= −
∑
p<nεn

1

eγp
(1 +O(e−1/εn) +O(1).

It remains to note that∑
p<nεn

1

p
= log log n− log εn +O(1).

Thus, we have Proposition 1.
We conjecture that A(n) = n!/ exp((e−γ+o(1))n log log n) as n→∞,

that is, Proposition 1 is best possible. Though it is difficult to “see”
log log n tending to infinity, we have some scant evidence in Table 3.
Let un = (n!/A(n))1/n, so the conjecture is that un ∼ e−γ log log n.
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Table 3. Values of A(n) for n composite and un.

n A(n) un
4 2 1.8612
6 8 2.1170
8 30 2.4607
9 72 2.5786

10 408 2.4826
12 4,104 2.6440
14 29,640 2.8976
15 208,704 2.8388
16 1,437,312 2.8034
18 22,653,504 2.9479
20 318,695,040 3.1199
21 2,686,493,376 3.0866
22 27,628,410,816 3.0356
24 575,372,874,240 3.1722
25 1,775,480,841,216 3.2935
26 21,115,550,048,256 3.2420
27 132,879,856,582,656 3.2758
28 2,321,256,928,702,464 3.1932
30 83,095,013,944,442,880 3.2870

The computation of A(n) is helped by the realization that all of the
permutations counted have 1 and the primes in (n/2, n] as fixed points,
so one can deal with a somewhat smaller adjacency matrix than n×n.
In particular, if n is prime, then A(n) = A(n−1), so in Table 3 we only
consider n composite (the cases n = 1, 2 being trivial). In addition, for
a prime p ∈ (n/3, n/2] either p is a fixed point or (p, 2p) is a 2-cycle,
which gives another reduction.

7.1. Other types of permutations. One might consider other arith-
metic constraints on permutations. For example, what can be said
about the number of permutations σ of [n] where for each j ∈ [n], ei-
ther j | σ(j) or σ(j) | j? Or, the number where each lcm[j, σ(j)] ≤ n?
Problems such as the longest possible cycle in such permutations, the
minimum number of disjoint cycles, etc. were studied in [10], [4], [8]
and elsewhere. The enumeration problems have not been well-studied,
though the first one has an OEIS page: A320843.
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[3] P. Erdős, Some remarks about additive and multiplicative functions, Bull.
Amer. Math. Soc. 52 (1946), 527–537.
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