A celebration of analytic number theory, a conference in honor of Andrew Granville CRM, Montréal, Canada, September 5–9, 2022

Permutations and arithmetic

Carl Pomerance, **Dartmouth College**

A simple question:

Given two intervals I, J of n consecutive integers is there always a one-to-one correspondence from I to J

A simple question:

Given two intervals I, J of n consecutive integers is there always a one-to-one correspondence from I to Jwith corresponding numbers relatively prime? We're asking for a matching in the coprime graph. A simple question:

Given two intervals I, J of n consecutive integers is there always a one-to-one correspondence from I to Jwith corresponding numbers relatively prime? We're asking for a matching in the coprime graph.

A simple answer: No.

For example, $I = \{4\}$, $J = \{6\}$.

Or $I = \{3, 4\}, J = \{5, 6\}.$

Or $I = \{4, 5, 6\}, J = \{12, 13, 14\}.$

In the first two examples, $\{4\}$, $\{6\}$ and $\{3,4\}$, $\{5,6\}$, one set contains a number divisible by a prime divisor of each number in the other set. Namely, "6" in both cases.

The third example, $\{4,5,6\}$, $\{12,13,14\}$, has a strict majority of even numbers in both sets.

There are other "monsters" too, like

 $I = \{10, 11, 12, 13\}, J = \{15, 16, 17, 18\}.$

(Both 10 and 12 match only to 17.)

Around 1960, **D. J. Newman** conjectured that in the special case that

 $I = [n] = \{1, 2, ..., n\}, J$ is any interval of n consecutive integers,

there must be a coprime matching. (That is, there is a 1-1 correspondence with corresponding numbers coprime.)

In a lecture in 1962 at the University of Reading, **Paul Erdős** offered £5 for a proof of the weaker conjecture where I = [n] and $J = \{n + 1, ..., 2n\}$. A year later, two Reading professors, **D. E. Daykin** and **M. J. Baines** proved this weaker conjecture. Mike Baines tells me they collected £2.5 each.

In 1971, Vašek Chvátal proved the full Newman conjecture for $n \leq 1000$.

D. J. Newman

Vašek Chvátal

In 1979 I attended a conference in Carbondale, Illinois, meeting **John Selfridge** who told me about Newman's conjecture, and described an algorithm that, if correct, would give a coprime matching.

We worked on this for a few months, and ended up with a proof of Newman's conjecture, using the distribution function of $\varphi(n)/n$.

John Selfridge

The distribution function for $\varphi(n)/n$ (from a paper of Charles Wall). We were interested in the related distribution for odd n.

What about the case when I = J = [n], so we would have a coprime permutation?

What about the case when I = J = [n], so we would have a coprime permutation?

Easy! Just take the cycle (1, 2, ..., n).

What about the case when I = J = [n], so we would have a coprime permutation?

Easy! Just take the cycle (1, 2, ..., n).

OK, a better question: Enumerate them. How many coprime permutations are there of [n]?

Here is Andrew enumerating the case n = 3; there are 3 of them.

Let C(n) denote the number of permutations σ of [n] where each $gcd(j, \sigma(j)) = 1$. So, for example, C(3) = 3.

Also C(4) = 4: It's an even-odd thing. The numbers 2, 4 must be sent to 1, 3 in some order, and vice versa.

Maybe C(n) = n? Well no. **David Jackson** computed C(n) for $n \le 24$ in 1977, and e.g., C(24) = 1,142,807,773,593,600.

Jackson's view of the problem: Take the $n \times n$ matrix M where the i, j entry is 1 if gcd(i, j) = 1 and is 0 otherwise (the adjacency matrix for the coprime graph on [n]). Then C(n) is the *permanent* of M. Let $C_0(n)$ be the number of coprime matchings of [n] and $[n]_o$, the first n odd numbers. As we saw with C(4), we have $C(n) = C_0(n/2)^2$ for n even. This observation immediately gives us a nontrivial upper bound for C(n) when n is even, namely

 $C(n) \le (n/2)!^2$, *n* even.

A similar argument shows that $C(n) \leq (m+1)!^2$ when n = 2m+1 is odd.

We conclude: $C(n) \le n!/(2 + o(1))^n$ and so most permutations are *not* coprime.

Is this the magnitude for C(n), i.e., is there a similar lower bound?

Using similar methods as in my paper with **Selfridge**, I was able to prove that

 $C(n) \ge n!/3.73^n$ for all large n,

and I was able to improve the upper bound to $C(n) \le n!/(2.5 + o(1))^n$.

A former student of mine, Nathan McNew, came up with a clever heuristic that

$$C_n = n!/(c_0 + o(1))^n$$
, where $c_0 = 2 \prod_{p>2} \frac{p(p-2)^{1-2/p}}{(p-1)^{2-2/p}} = 2.65044...$

The heuristic behind this is that for a fixed prime p, the number of permutations σ of [n] with $p + \gcd(j, \sigma(j))$ for each j is $n!/(\gamma_p + o(1))^n$, where $\gamma_p = p(p-2)^{1-2/p}/(p-1)^{2-2/p}$. And then argue "independence".

A couple of days after posting to arXiv, two grad students at MIT proved this conjecture. These are Ashwin Sah and Mehtaab Sawhney.

Ashwin Sah

Mehtaab Sawhney

But as soon as one problem is solved, a few more arise! For example:

- 1. How many "anti-coprime" permutations are there of [n](meaning that each $gcd(j, \sigma(j)) > 1$ for j > 1)?
- 2. How many permutations of [n] are there where for each j either $j \mid \sigma(j)$ or $\sigma(j) \mid j$? Or, for each j, $lcm[j, \sigma(j)] \leq n$?

Anti-coprime permutations of [n]: Each $gcd(j, \sigma(j)) > 1$ for j > 1.

One way to construct these is to partition the j's in [n] by their least prime factor $P^{-}(n)$:

$$\mathcal{L}_p = \{j \in [n] : P^-(j) = p\},\$$

and then consider permutations σ where each $\sigma(\mathcal{L}_p) = \mathcal{L}_p$. Note that $\#\mathcal{L}_2 \sim \frac{1}{2}n$, $\#\mathcal{L}_3 \sim \frac{1}{6}n$, etc. For $p \leq n^{\epsilon}$ and p large, we have

$$\#\mathcal{L}_p \sim \frac{n}{p} \prod_{q < p} \left(1 - \frac{1}{q}\right) \sim \frac{n}{e^{\gamma} p \log p}$$

Doing the calculations, we get that the number A(n) of anti-coprime permutations of [n] has

$$A(n) \ge \frac{n!}{(\log n)^{(e^{-\gamma} + o(1))n}}.$$

But is this construction optimal? Very recently I proved this is essentially so, and in fact

$$A(n) = \frac{n!}{(\log n)^{(e^{-\gamma} + o(1))n}}, \quad n \to \infty.$$

For a long time I tried taking the primes in order: 2, 3, ..., but then I realized that most of the difference from n! comes from larger primes. Indeed, for those j with $P^{-}(j)$ large, there are not so many choices for a number j' with $\sigma(j) = j'$. The permutations σ of [n] where each $j | \sigma(j)$ or $\sigma(j) | j$ has its own story. In a talk at the Southeastern Conference on Combinatorics, Graph Theory, and Computing in Boca Raton, Florida in 1983, Paul Erdős proposed the following problem:

Consider the divisor graph on [n] where two distinct numbers j,k are connected by an edge if and only if j | k or k | j. Show that the length of the longest simple path in this graph has length o(n).

Erdős offered \$25 for a resolution of this problem, and he paid up when I solved it a few weeks later. It's the only time I won an Erdős prize. We now know after work of **Tenenbaum** and **Saias** that the length of the longest simple path in the divisor graph is of magnitude $n/\log n$.

But we're talking about permutations of [n], and we'd like to know how many there are where each $j | \sigma(j)$ or $\sigma(j) | j$. I very recently showed that the count is between 1.93ⁿ and 13.6ⁿ.

Surely we should be able to do better!

And sure enough we can.

McNew just proved that the count is $(c+o(1))^n$ where 2.069 < c < 2.694, with a similar result for the lcm problem.

Thank you,

Thank you,

and happy birthday Andrew!