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A simple question:

Given two intervals I, J of n consecutive integers is there

always a one-to-one correspondence from I to J

with corresponding numbers relatively prime?

We’re asking for a matching in the coprime graph.

A simple answer: No.

For example, I = {4}, J = {6}.

Or I = {3,4}, J = {5,6}.

Or I = {4,5,6}, J = {12,13,14}.
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In the first two examples, {4}, {6} and {3,4}, {5,6}, one set

contains a number divisible by a prime divisor of each number

in the other set. Namely, “6” in both cases.

The third example, {4,5,6}, {12,13,14}, has a strict majority of

even numbers in both sets.

There are other “monsters” too, like

I = {10,11,12,13}, J = {15,16,17,18}.

(Both 10 and 12 match only to 17.)
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Around 1960, D. J. Newman conjectured that in the special

case that

I = [n] = {1,2, . . . , n}, J is any interval of n consecutive integers,

there must be a coprime matching. (That is, there is a 1-1

correspondence with corresponding numbers coprime.)

In a lecture in 1962 at the University of Reading, Paul Erdős

offered £5 for a proof of the weaker conjecture where I = [n]

and J = {n + 1, . . . ,2n}. A year later, two Reading professors,

D. E. Daykin and M. J. Baines proved this weaker

conjecture. Mike Baines tells me they collected £2.5 each.

In 1971, Vašek Chvátal proved the full Newman conjecture for

n ≤ 1000.
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D. J. Newman Vašek Chvátal
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In 1979 I attended a conference in Carbondale, Illinois, meeting
John Selfridge who told me about Newman’s conjecture, and
described an algorithm that, if correct, would give a coprime
matching.

We worked on this for a few months, and ended up with a
proof of Newman’s conjecture, using the distribution function
of ϕ(n)/n.

John Selfridge

8



The distribution function for ϕ(n)/n (from a paper of Charles

Wall). We were interested in the related distribution for odd n.
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What about the case when I = J = [n], so we would have a

coprime permutation?
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What about the case when I = J = [n], so we would have a

coprime permutation?

Easy! Just take the cycle (1,2, . . . , n).
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What about the case when I = J = [n], so we would have a

coprime permutation?

Easy! Just take the cycle (1,2, . . . , n).

OK, a better question: Enumerate them. How many coprime

permutations are there of [n]?
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Here is Andrew enumerating the case n = 3; there are 3 of them.

13



Let C(n) denote the number of permutations σ of [n] where

each gcd(j,σ(j)) = 1. So, for example, C(3) = 3.

Also C(4) = 4: It’s an even–odd thing. The numbers 2, 4 must

be sent to 1, 3 in some order, and vice versa.

Maybe C(n) = n? Well no. David Jackson computed C(n) for

n ≤ 24 in 1977, and e.g., C(24) = 1,142,807,773,593,600.

Jackson’s view of the problem: Take the n ×n matrix M where

the i, j entry is 1 if gcd(i, j) = 1 and is 0 otherwise (the

adjacency matrix for the coprime graph on [n]). Then C(n) is

the permanent of M .
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Let C0(n) be the number of coprime matchings of [n] and [n]o,

the first n odd numbers. As we saw with C(4), we have

C(n) = C0(n/2)2 for n even. This observation immediately gives

us a nontrivial upper bound for C(n) when n is even, namely

C(n) ≤ (n/2)!2, n even.

A similar argument shows that C(n) ≤ (m + 1)!2 when n = 2m + 1

is odd.

We conclude: C(n) ≤ n!/(2 + o(1))n and so most permutations

are not coprime.

Is this the magnitude for C(n), i.e., is there a similar lower

bound?
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Using similar methods as in my paper with Selfridge, I was

able to prove that

C(n) ≥ n!/3.73n for all large n,

and I was able to improve the upper bound to

C(n) ≤ n!/(2.5 + o(1))n.

A former student of mine, Nathan McNew, came up with a

clever heuristic that

Cn = n!/(c0 + o(1))n, where c0 = 2∏
p>2

p(p − 2)1−2/p

(p − 1)2−2/p
= 2.65044 . . . .
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The heuristic behind this is that for a fixed prime p, the

number of permutations σ of [n] with p ∤ gcd(j,σ(j)) for each j

is n!/(γp + o(1))n, where γp = p(p − 2)1−2/p/(p − 1)2−2/p. And then

argue “independence”.

A couple of days after posting to arXiv, two grad students at

MIT proved this conjecture. These are Ashwin Sah and

Mehtaab Sawhney.
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Ashwin Sah Mehtaab Sawhney
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But as soon as one problem is solved, a few more arise! For

example:

1. How many “anti-coprime” permutations are there of [n]

(meaning that each gcd(j,σ(j)) > 1 for j > 1)?

2. How many permutations of [n] are there where for each j

either j ∣ σ(j) or σ(j) ∣ j? Or, for each j, lcm[j,σ(j)] ≤ n?
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Anti-coprime permutations of [n]: Each gcd(j,σ(j)) > 1 for j > 1.

One way to construct these is to partition the j’s in [n] by their

least prime factor P −(n):

Lp = {j ∈ [n] ∶ P −(j) = p},

and then consider permutations σ where each σ(Lp) = Lp. Note

that #L2 ∼ 1
2n, #L3 ∼ 1

6n, etc. For p ≤ nε and p large, we have

#Lp ∼
n

p
∏
q<p

(1 −
1

q
) ∼

n

eγp logp
.

Doing the calculations, we get that the number A(n) of

anti-coprime permutations of [n] has

A(n) ≥
n!

(logn)(e
−γ+o(1))n

.
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But is this construction optimal? Very recently I proved this is

essentially so, and in fact

A(n) =
n!

(logn)(e
−γ+o(1))n

, n→∞.

For a long time I tried taking the primes in order: 2, 3, . . . , but

then I realized that most of the difference from n! comes from

larger primes. Indeed, for those j with P −(j) large, there are

not so many choices for a number j′ with σ(j) = j′.
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The permutations σ of [n] where each j ∣ σ(j) or σ(j) ∣ j has its

own story. In a talk at the Southeastern Conference on

Combinatorics, Graph Theory, and Computing in Boca Raton,

Florida in 1983, Paul Erdős proposed the following problem:

Consider the divisor graph on [n] where two distinct numbers

j, k are connected by an edge if and only if j ∣ k or k ∣ j. Show

that the length of the longest simple path in this graph has

length o(n).

Erdős offered $25 for a resolution of this problem, and he paid

up when I solved it a few weeks later. It’s the only time I won

an Erdős prize.
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We now know after work of Tenenbaum and Saias that the

length of the longest simple path in the divisor graph is of

magnitude n/ logn.

But we’re talking about permutations of [n], and we’d like to

know how many there are where each j ∣ σ(j) or σ(j) ∣ j. I very

recently showed that the count is between 1.93n and 13.6n.

Surely we should be able to do better!
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And sure enough we can.

McNew just proved that the count

is (c+o(1))n where 2.069 < c < 2.694,

with a similar result for the lcm

problem.
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Thank you,
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Thank you,

and happy birthday Andrew!
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