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Abstract

We discuss a relative of the perfect numbers for which it is possible to prove that there are
infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the
same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect.
We show that the count Nσ(x) of prime-perfect numbers in [1, x] satisfies estimates of the
form

exp((log x)c/ log log log x) ≤ Nσ(x) ≤ x
1
3
+o(1),

as x → ∞. We also discuss the analogous problem for the Euler function. Letting Nϕ(x)
denote the number of n ≤ x for which n and ϕ(n) share the same set of prime factors, we
show that as x→∞,

x7/20 ≤ Nϕ(x) ≤ x1/2

L(x)1/4+o(1)
, where L(x) = xlog log log x/ log log x.

We conclude by discussing some related problems posed by Harborth and Cohen.

1. Introduction

Let σ(n) :=
∑

d|n d be the sum of the proper divisors of n. A natural number n is called

perfect if σ(n) = 2n and, more generally, multiply perfect if n | σ(n). The study of such
numbers has an ancient pedigree (surveyed, e.g., in [5, Chapter 1] and [28, Chapter 1]), but
many of the most interesting problems remain unsolved. Chief among them is the question
of whether or not there are infinitely many multiply perfect numbers.

In this note we introduce a class of numbers whose definition is inspired by the perfect
numbers but for which we can prove that there are infinitely many examples. Call n prime-
perfect if σ(n) and n have the same set of distinct prime factors. Every even perfect number
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n is prime-perfect, but there are many other examples, the first being the multiply-perfect
number n = 120. Prime-perfect numbers appear to have been first considered by the second
author, who proved [24] that every such number with two distinct prime factors is an even
perfect number.

Our central objective is to establish both lower and upper bounds for Nσ(x), the number
of prime-perfect n ≤ x. We begin with the lower bound.

Theorem 1.1. As x→∞,

Nσ(x) ≥ exp((log x)(
1
2
log 2+o(1))/ log log log x).

We note that this lower bound, though of the shape xo(1), exceeds any fixed power of
log x for x sufficiently large.

Our upper-bound proof covers a class of numbers somewhat wider than that of the prime-
perfects. Let rad(n) denote the largest squarefree divisor of n, so that n is prime-perfect if
and only if rad(n) = rad(σ(n)). Call n prime-abundant if every prime dividing n divides
σ(n), i.e., if rad(n) | rad(σ(n)). For example, if n = 23 · 3, then σ(n) = 22 · 3 · 5, so n is
prime-abundant but not prime-perfect.

Theorem 1.2. The number of prime-abundant n ≤ x is at most x1/3+o(1), as x→∞.

The second author conjectured (ca. 1973, unpublished) that a much stronger upper bound
should hold for prime-perfect numbers:

Conjecture 1.3. For each ε > 0, we have Nσ(x) = o(xε), as x→∞.

For some numerical perspective, up to 109, there are 198 prime-perfect numbers and 5328
prime-abundant numbers.

For perfect and multiply perfect numbers, the analogues of Conjecture 1.3 are known;
these are due to Hornfeck and Wirsing [16] (see also [29], whose main result is quoted as
Theorem C below). It seems that the prime-perfect setting is genuinely more difficult. One
hint as to why is discussed in §4. Call the natural number n ϕ-perfect if n and ϕ(n) share
the same set of prime factors, and let Nϕ(x) be the corresponding counting function. While
analogues of the the Hornfeck–Wirsing results are easily proved if σ is replaced by Euler’s
ϕ-function, we show in §4 that Nϕ(x) does not satisfy the bound of Conjecture 1.3. In fact,
we have the following estimates:

Theorem 1.4. As x→∞,

x7/20 ≤ Nϕ(x) ≤ x1/2

L(x)1/4+o(1)
, where L(x) := xlog log log x/ log log x.

In §5, we adapt our methods to study certain problems of Harborth and Cohen. Some
questions related to ours are also considered in the papers [18], [19] of Luca.

2



83621

181

13

7

7

11

3

73

Figure 1: A picture of T (+)(83621).

Notation

Throughout, p and q always denote prime numbers. We let d(n) :=
∑

d|n 1 denote the

number of positive divisors of n, while ω(n) :=
∑

p|n 1 denotes the corresponding count of

distinct prime divisors. P (n) denotes the largest prime divisor of n, with the understanding
that P (1) = 1. We say that n is y-smooth if P (n) ≤ y, and we write Ψ(x, y) for the count of
n ≤ x with P (n) ≤ y. For each n, its y-smooth part is defined as the largest y-smooth divisor
of n. A number n is called k-full, where k is a natural number, if pk divides n whenever p
divides n. We write d ‖ n to indicate that d is a unitary divisor of n, i.e., that d | n and
gcd(d, n/d) = 1.

The Landau–Bachmann o and O-symbols, as well as Vinogradov’s � notation, are em-
ployed with their usual meanings. Implied constants are absolute unless otherwise specified.

We write log1 x = max{1, log x}, and we let logk denote the kth iterate of log1.

2. The lower bound: Proof of Theorem 1.1

If p is an odd prime, define the prime tree T (+)(p) associated to p as follows: The root node
is p, and for each node q, its child nodes are labeled with the odd prime divisors of q + 1.
The case of p = 83621 is illustrated in Figure 1.

With q − 1 replacing q + 1, such trees were introduced by Pratt [26] (see also §4). A
comprehensive study of such objects has recently been undertaken by Ford, Konyagin, and
Luca [11]. For our purposes, the following modest result suffices (cf. [26, p. 217]). Let
f (+)(p) denote the total number of nodes in T (+)(p) (e.g., f (+)(83621) = 9).

Lemma 2.1. For each odd prime p, we have f (+)(p) ≤ 2 log p.

Proof. We have f (+)(3) = 1, so the lemma holds when p = 3. Now suppose q ≥ 5 is prime
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and that the upper-bound of the lemma holds for all odd primes p < q. Then

f (+)(q) = 1 +
∑
p|q+1
p>2

f (+)(p) ≤ 1 + 2
∑
p|q+1
p>2

log p

≤ 1 + 2 log
q + 1

2
= 2 log

e1/2(q + 1)

2
≤ 2 log q.

We now introduce an algorithm for constructing prime-perfect numbers, given an even,
prime-abundant input (cf. the proof of [4, Theorem 4]).

Algorithm A:

Input: An even prime-abundant number n0

Output: A prime-perfect n for which n0 ‖ n and n/n0 is squarefree
n←− n0 // Initialize

while rad(σ(n)) - n // Loop until prime-perfect

do
Q←−

∏
q|σ(n)
q-n

q

n←− nQ
end
return n

Proof of correctness of Algorithm A. We are given that n = n0 satisfies rad(n) | σ(n). By
the choice of Q, this property is preserved by execution of the while loop. So it is enough to
show that the algorithm terminates, for then the output n satisfies both rad(n) | σ(n) and
rad(σ(n)) | n. Hence, n is prime-perfect. Clearly also n0 ‖ n and n/n0 is squarefree.

To prove that the algorithm terminates, suppose first that n0 is squarefree. Then each
time the while loop is executed, the new primes introduced by Q belong to the union
∪p|n0,p>2T (p). (Here we identify T (p) with the set of primes used to label its nodes.) Since
each T (p) is a finite tree, the result follows in this case. If n is not squarefree and not prime-
perfect, let Q0 be the product of the primes dividing σ(n) and not n. (So Q0 is the value
of Q when the while loop is first executed.) Then at each future execution of the while

loop, the new primes introduced in Q belong to ∪q|Q0T (q), and the proof is completed as
before.

Proof of Theorem 1.1. Let y be a large real number, and let m = 2 · 3 · 5 · · · · be the largest
product of the initial segment of primes for which m ≤ y. By the prime number theorem,
ω(m) ∼ log y/ log2 y as y →∞, and so

d(m) = 2ω(m) ≥ y(log 2+o(1))/ log2 y (y →∞).

Let ` range over all numbers of the form

` =
∏

p|2m−1

pep , where each ep ∈ {3, 5}.
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For each such `, consider n0 := 2m−1`. Then 2 | σ(`) and rad(`) | σ(2m−1), so that n0 is
prime-abundant. The number of n0 that arise in this way is

2ω(2
m−1) ≥ 2d(m)−2 ≥ exp(y(log 2+o(1))/ log2 y),

as y → ∞. Here the first inequality follows from a theorem of Bang [3] on primitive prime
divisors of Mersenne numbers. Moreover, each n0 appearing in this construction satisfies

n0 ≤ 2m−1(2m − 1)5 < 26m. (2.1)

We feed each n0 into Algorithm A and receive as output a prime-perfect number n for
which n0 ‖ n and n/n0 is squarefree. Observing that n0 is the squarefull part of n, we see
that distinct values of n0 correspond to distinct prime-perfect numbers n.

If Q0 denotes the product of the primes dividing σ(n) but not n, then, by the proof of
correctness of Algorithm A, the output n satisfies

n | n0Q0

∏
p|Q0

∏
q∈Tp

q

 . (2.2)

Crudely, with f = f (+),∏
p|Q0

∏
q∈Tp

q ≤
∏
p|Q0

pf(p) ≤ Q
∑
p|Q0

f(p)

0 ≤ Q2 logQ0

0 , (2.3)

by Lemma 2.1. But Q0 ≤ σ(n0) ≤ n2
0, and so from (2.2) and (2.3),

n ≤ n0 · n2
0 · exp(2(logQ0)

2) ≤ n3
0 exp(8(log n0)

2).

Using (2.1), we see that

n ≤ 218m exp(139m2) ≤ exp(140m2),

say, once y (and hence m) is large enough.

Setting X := exp(140y2), so that y =
√

logX/140, we have shown that the number of
prime-perfect numbers contained in [1, X] is at least

exp(y(log 2+o(1))/ log2 y) = exp((logX)(
1
2
log 2+o(1))/ log3X),

as y → ∞. For large X, we can simply define y =
√

logX/140; then y = y(X) → ∞ as
X →∞, and Theorem 1.1 follows.

The attentive reader will have noticed that all the prime-perfect numbers constructed
here are even. In fact, the second author has made the following conjecture (see [13, B19]):

Conjecture 2.2. Each prime-perfect number n > 1 is even.
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3. The upper bound: Proof of Theorem 1.2

For each natural number n, write σ(n)/n = N/D, where N = N(n) and D = D(n) are
coprime positive integers. The following theorem appears as [22, Theorem 4.1]. Colloquially,
it says that n is nearly determined by the lowest-terms denominator of σ(n)/n.

Theorem A. For each x ≥ 1 and each positive integer d, the number of n ≤ x for which

D(n) = d is at most xO(1/
√

log2 x).

The next lemma is inspired by Erdős’s proof of [7, Theorem 2].

Lemma 3.1. Given a natural number m, the following algorithm outputs a unitary divisor
a of m with gcd(a, σ(a)) = 1. Moreover, at most xo(1) inputs m ≤ x correspond to the same
output a, as x→∞.

Algorithm B:

Input: A natural number m
Output: A divisor a of m for which a ‖ m and gcd(a, σ(a)) = 1
Factor n = pe11 p

e2
2 · · · p

ek
k , where p1 > p2 > · · · > pk.

a← 1 // Initialize

for i = 1 to k do // Loop over prime power divisors of m
if gcd(σ(peii a), peii a) = 1 then

a← peii a
end
return a

Remark. Fix a natural number K. We will see from the proof of Lemma 3.1 that if we
restrict the input m to K-free numbers, the term xo(1) in the conclusion of Lemma 3.1 can
be improved to xOK(1/ log2 x).

Proof. It is trivial that the output a of the algorithm is a unitary divisor of m for which
gcd(a, σ(a)) = 1. So we concentrate on the last half of the lemma. Fix ε > 0. We will show
that for large x, the number of inputs m ≤ x corresponding to a given output a is bounded
by xε, uniformly in a. Fix a natural number K with 1

K
< ε.

Suppose that a is the output corresponding to the input m ≤ x. Write m = abc, where
c is the K-full part of m/a. If p | bc, then one of the following two possibilities holds:

(1) p | σ(qe), where qe ‖ a, or

(2) there is a prime q dividing a with q > p for which q | σ(pe), where pe ‖ m.

In case (1) above, p | σ(a). If p | b and is described by case (2), then there is some prime q
dividing a for which x = p is a solution in the interval [0, q) to one of the K − 1 congruences

xe + xe−1 + · · ·+ x+ 1 ≡ 0 (mod q), where 1 ≤ e < K.
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Let S be the set of all primes p which either divide σ(a) or appear as a solution to such
a congruence. Then S depends only on a and contains every prime divisor of b. Since a
polynomial of degree e has at most e roots over Z/qZ, we find that for large x,

#S ≤ ω(σ(a)) +
∑
q|a

∑
1≤e<K

e ≤ ω(σ(a)) +K2ω(a).

Since σ(a) ≤ a2 and ω(h)� log h
log2 h

for all h ≥ 1, we find that for large x,

#S ≤ C
log x

log log x
,

where C is a constant depending only on K.

For i ≥ 1, let pi denote the ith prime in the natural order. We have just seen that given
a, the prime factors of b belong to a prescribed set of size at most R := bC log x/ log log xc.
The number of such b ≤ x is bounded above by the number of b ≤ x supported on the
primes p1, . . . , pR, i.e., by Ψ(x, pR). By the prime number theorem, pR ≤ 2C log x for large
x, and now by standard results on smooth numbers (see, e.g., [12, eq. (1.19)]), Ψ(x, pR) ≤
xOK(1/ log2 x). Since the number of possibilities for c is � x1/K (see [10]) and 1/K < ε, the
number of possibilities for n = abc, given a, is smaller than xε for large x.

The next lemma, which is implicit in the proof of [8, Theorem 4], appears explicitly as
[22, Lemma 4.2].

Lemma 3.2. Let m ≤ y be a natural number. The number of n ≤ y for which rad(n) | m is
at most yO(1/ log2 y).

Remark. We often apply Lemma 3.2 to estimate the number of n with rad(n) = m.

We are now in a position to prove Theorem 1.2. Below, we write o(1) for a quantity that
tends to 0 as x→∞, uniformly in all other parameters.

Proof of Theorem 1.2. Suppose n ≤ x is prime-abundant. Write n = AB, where A is
squarefree, B is squarefull, and gcd(A,B) = 1. Write B = CD, where C is the output of
Algorithm B when m = B. Let L = dlog xe. Then we may choose a, b, c ∈ { 1

L
, 2
L
, . . . , L−1

L
, 1}

for which
A ∈ [e−1xa, xa], B ∈ [e−1xb, xb], and C ∈ [e−1xc, xc]. (3.1)

Since the number of possible triples (a, b, c) is L3 = xo(1), it is enough to prove that the
number of prime-abundant n ∈ (x/2, x] corresponding to a given triple is at most

x1/3+o(1), (3.2)

as x→∞.

First we show that given B, the number of possible values of A is at most xo(1). Since
n = AB is prime-abundant, A | σ(A)σ(B). Hence, the lowest-terms denominator of the
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fraction σ(A)/A divides σ(B), and so is restricted to xo(1) possible values. (We use here an
estimate for the maximal order of the divisor function, such as [15, Theorem 317].) Theorem
A now shows that A itself is restricted to a set of size xo(1). Thus, the number of possible
values of n = AB is at most

xb/2+o(1), (3.3)

since the number of squarefull values of B ≤ xb is � xb/2.

We can easily sharpen this; the number of n in question is bounded above by

xc/2+o(1). (3.4)

To see this, notice that C is squarefull, since C ‖ B. Thus, there are � xc/2 choices for C.
By Lemma 3.1, C determines B up to xo(1) possibilities. Since B determines A up to xo(1)

choices, the number of choices for n = AB is at most xc/2+o(1) also.

By a third and final argument, we show that the number of such n is bounded by

xa+(b−c)/2+o(1). (3.5)

The number of choices for A is at most xa. Also, D is squarefull and D � xb−c, so that
the number of possible values of D is � x(b−c)/2. So there are at most xa+(b−c)/2+o(1)

possibilities for AD = n/C. Since n is prime-abundant and gcd(C, σ(C)) = 1, we have
rad(C) | σ(A)σ(D). So given A and D, there are only xo(1) possibilities for C.

Comparing (3.3), (3.4), and (3.5), we see that the number of prime-abundant n ∈ (x/2, x]
corresponding to the triple (a, b, c) is at most

xt+o(1), where t = min{b/2, c/2, a+ (b− c)/2}.

Since n � xa+b, we have a+ b ≤ 1 + o(1), and so

3t = t+ t+ t ≤ b/2 + c/2 + a+ (b− c)/2 = a+ b ≤ 1 + o(1),

whence t ≤ 1/3 + o(1). This confirms the upper estimate (3.2).

4. Analogues for Euler’s function

In view of the duality between ϕ and σ, it is natural to wonder about the ϕ-version of the
prime-perfect numbers. Call n ϕ-abundant if every prime dividing n divides ϕ(n), and call
n ϕ-perfect if the set of primes dividing n coincides with the set of primes dividing ϕ(n).
Let Nϕ(x) denote the number of ϕ-perfect n ≤ x, and let N ′ϕ(x) denote the number of
ϕ-abundant n ≤ x.

Since ϕ(m2) = mϕ(m), every square is prime-abundant, and so N ′ϕ(x) � x1/2. (Note
the sharp contrast with the result of Theorem 1.2.) More generally, every squarefull number
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is prime-abundant, which gives a somewhat larger value of the implied constant in this
estimate. In our first theorem in this section, we show that N ′ϕ(x)/x1/2 tends to infinity, but
not too rapidly. Set

L(x) := exp(log x log3 x/ log2 x).

Theorem 4.1. For some positive constant c and all large x, we have

N ′ϕ(x) ≥ x1/2 exp(c(log2 x)1/2/(log3 x)3/2).

In the opposite direction, we have as x→∞,

N ′ϕ(x) ≤ x1/2L(x)1/2+o(1).

As a consequence, N ′ϕ(x) = x1/2+o(1).

Proof. We start with the upper bound. By the remark following Lemma 3.2, we can assume
that rad(n) > x1/2L(x)1/2. The remaining ϕ-abundant n satisfy gcd(n, ϕ(n)) > x1/2L(x)1/2;
but by [8, Theorem 11], ∑

m≤x

gcd(m,ϕ(m)) ≤ x · L(x)1+o(1),

and so the number of such n is at most x1/2L(x)1/2+o(1).

We now turn to the lower bound. We can pick a positive constant c0 for which the
following holds: With z := c0 log2 x/ log3 x and P =

∏
p≤z p, the number of m ≤ y with

P - ϕ(m) is � y/ log2 x, uniformly for 3
√
x ≤ y ≤ x (cf. the proof of [20, Lemma 2]). We

consider numbers n of the form n = m2A, where A | P , m ≤
√
x/A, m is coprime to P , and

P | ϕ(m). Note that each such n is ϕ-abundant. Moreover, distinct pairs (m,A) give rise to
distinct values of n.

It remains to count the number of pairs (m,A). For a given A, the number of m ≤
√
x/A

with m coprime to P is �
√
x/A/ log z �

√
x/A/ log3 x, by Mertens’ theorem and an

elementary inclusion-exclusion argument. Of these m, almost all of them are such that P
divides ϕ(m), by our choice of c0 above. So the number of n we construct is

�
√
x

log3 x

∑
A|P

1√
A

=

√
x

log3 x

∏
p≤z

(
1 +

1
√
p

)
�
√
x(log3 x)O(1) exp

(∑
p≤z

1
√
p

)
.

Since
∑

p≤z p
−1/2 ∼ 2

√
z/ log z, we have the lower bound.

It seems plausible that there are almost as many ϕ-perfect numbers as ϕ-abundant num-
bers, in the sense that

Nϕ(x) = x1/2+o(1). (4.1)

Indeed, (4.1) follows from a standard conjecture, as we now explain. Say that η ∈ (0, 1) is
admissible if there are positive numbers K = K(η) and x0 = x0(η) for which

#{p ≤ x : P (p− 1) ≤ x1−η} ≥ x

(log x)K
(for x ≥ x0). (4.2)
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In [6], Erdős used Brun’s sieve to show that some η is admissible, and he conjectured that
all η < 1 are admissible. The best unconditional result in this direction is due to Baker and
Harman [2], who have shown the admissibility of η = 0.7039.

Theorem 4.2. Fix an admissible number η. Then the number of ϕ-perfect n ≤ x is at least
xη/2+o(1), as x→∞.

Taking as input the result of Baker and Harman, we obtain the first inequality of Theorem
1.4. If Erdős is right that every η < 1 is admissible, then Theorems 4.1 and 4.2 give the
estimate (4.1). We remark that the Elliott–Halberstam conjecture implies that every η < 1
is admissible (cf. [1, Theorem 3], [12, §5.1]).

Call m ϕ-deficient if every prime dividing ϕ(m) divides m. Then m is ϕ-perfect precisely
when m is both ϕ-abundant and ϕ-deficient.

Lemma 4.3. Fix an admissible number η. Then the number of ϕ-deficient m ≤ x is at least
xη+o(1), as x→∞.

Proof. Let α = (1−η)−1. Put z = (log x/ log log x)α, and put w = x/ exp(2 log x/ log2 x). By
the definition of admissibility, the set P of primes p ≤ z for which P (p−1) ≤ log x/ log log x
has cardinality at least (log x)α/(log2 x)O(1); here the O-constant may depend on η. Let
u = b logw

log z
c, and consider all numbers n that can be formed as a product of u distinct primes

from P. Each such n satisfies n ≤ w and P (ϕ(n)) ≤ log x/ log log x. Moreover, as x→∞,
the number of such n is (

#P

u

)
≥
(

#P

u

)u
≥ x

α−1
α

+o(1) = xη+o(1),

by a short computation. For each such n, put

m := n
∏

p≤log x/ log log x

p. (4.3)

Then
m ≤ w

∏
p≤log x/ log log x

p ≤ w exp((1 + o(1)) log x/ log log x) < x

for large x, and each such m is ϕ-deficient. Since distinct values of n give rise to distinct
values of m, the result follows.

Proof of Theorem 4.2. Since ϕ(m2) = mϕ(m), the number m2 is ϕ-perfect if m is ϕ-deficient.
So Theorem 4.2 follows from Lemma 4.3.

If one is willing to assume further unproved hypotheses, then one can take the reasoning
of Lemma 4.3 and Theorem 4.2 a bit further. It seems plausible that in a wide range of x
and y,

#{p ≤ x : p− 1 is y-smooth}
π(x)

≈ Ψ(x, y)

x
.
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It may even be that the left and right-hand sides are asymptotic to one another in the range
x ≥ y and y → ∞; this is explicitly conjectured in [25], but the thought dates back to [6].
In particular, it seems reasonable to assume the following:

With ` = log2 x and z = e`
2
, the set P of primes p ≤ z with P (p− 1) ≤ log x/(2 log2 x)

satisfies #P ≥ e`
2−(1+o(1))` log `.

Let w := x/ exp(2 log x/ log2 x). Then whenever m is a product of k := b logw
log z
c primes from

P, the number n := m
∏

p≤log x/ log2 x
p is ϕ-deficient and belongs to [1, x]. A quick calculation

shows that the number of values of n we have just constructed is x/L(x)1+o(1). Since each
n2 is ϕ-perfect, this implies that Nϕ(x) ≥ x1/2/L(x)1/2+o(1).

As we show in the rest of this section, for ϕ-perfect numbers which are squarefull, this
(conditional) lower bound is best-possible.

Theorem 4.4. As x → ∞, the number of ϕ-perfect n ≤ x which are squarefull is at most
x1/2/L(x)1/2+o(1). Also, as asserted in Theorem 1.4, Nϕ(x) ≤ x1/2/L(x)1/4+o(1).

We do not know whether the exponent 1
4

in the latter half of Theorem 4.4 is optimal;
perhaps squares tell almost the whole story and the “correct” exponent is 1

2
.

For the proof of Theorem 4.4, we require the following analogue of Lemma 3.1:

Lemma 4.5. We can exhibit an algorithm which, given a squarefree number m, outputs a
divisor a of m with gcd(a, ϕ(a)) = 1, and which is nearly one-to-one in the following sense:
Each output corresponds to at most xO(1/ log2 x) inputs in [1, x].

Proof. List the primes dividing m in decreasing order, say p1 > p2 > · · · > pk. Let a = 1,
and for 1 ≤ i ≤ k, replace a with api if gcd(api, ϕ(api)) = 1. At the end of the algorithm,
write m = ab. Clearly (a, ϕ(a)) = 1. If p | b, then there must be a prime q dividing a for
which p | q − 1; hence b | ϕ(a). So the result follows from the maximal order of the divisor
function.

For primes p, define the Pratt prime tree T (−)(p) as follows: The root node is p, and for
each node q, its child nodes are labeled with the prime divisors of q − 1.

Lemma 4.6. Suppose that n is ϕ-perfect, and write n = AB, where A is squarefree, B
is squarefull, and gcd(A,B) = 1. Then A is the product of all those primes not dividing
B which appear in at least one of the trees T (−)(p), for p dividing B. In particular, n is
determined entirely by B.

Proof. Suppose that p divides B. Then ϕ(p) | ϕ(B) | ϕ(n). Since n is prime-perfect, every
prime q dividing p− 1 = ϕ(p) divides n. For each such q, we have q − 1 = ϕ(q) | ϕ(n), and
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so each prime r dividing q − 1 divides n. Continuing this process, we see that n is divisible
by all the primes in all the trees T (−)(p), and hence A is divisible by the product of primes
appearing in the lemma statement.

Now we show every prime dividing A belongs to some T (−)(p), where p | B. Suppose
otherwise, and let q be the largest counterexample. Since A is prime-perfect, q | ϕ(A)ϕ(B).
If q | ϕ(A), then q | r − 1 for some prime r > q; by the maximality of q, it follows that
r belongs to one of the trees T (−)(p), where p | B. But then q belongs to T (−)(p). This
contradiction shows that q | ϕ(B). Since A and B are relatively prime, q - B, and so q | p−1
for some prime p dividing B. But in this case, q belongs to T (−)(p).

Finally, we quote an estimate from [25] concerning the multiplicities of values of the Euler
function. Let ϕ−1(m) = {n : ϕ(n) = m}.

Theorem B. As m→∞, we have #ϕ−1(m) ≤ m/L(m)1+o(1).

Proof of Theorem 4.4. For each ϕ-perfect number n ≤ x, write n = AB, with A and B as
in Lemma 4.6. It is enough to prove that given A, the number of corresponding values of
B is bounded by x1/2A−1/2L(x)−1/2+o(1), uniformly for A ≤ L(x)1/2. Indeed, if this claim
is proved, the first assertion of Theorem 4.4 follows immediately upon taking A = 1. To
obtain the bound on Nϕ(x), we take two cases: The number of n corresponding to values of
A ≤ L(x)1/2 is at most

x1/2L(x)−1/2+o(1)
∑
A

A−1/2 = x1/2/L(x)1/4+o(1),

as desired. On the other hand, if A > L(x)1/2, then B ≤ x/L(x)1/2, and so the number of
possible values of B is � x1/2/L(x)1/4. Since B determines A by Lemma 4.6, we obtain the
stated upper bound on Nϕ(x).

It remains to prove the initial claim. Fix A. Write R = rad(B), and notice that
R ≤ x1/2A−1/2. Since R determines B in at most L(x)o(1) ways by Lemma 3.2, and B
determines A, it is enough to prove that the number of possibilities for R is bounded by
x1/2A−1/2L(x)−1/2+o(1). Let d be the output of the algorithm of Lemma 4.5 when m = R.
That lemma allows us to assume that

x1/2A−1/2 ≥ d > x1/2A−1/2L(x)−1/2. (4.4)

Since n is prime-perfect, rad(ϕ(d)) | AB, and so if we put

`(d) =
rad(ϕ(d))

gcd(rad(ϕ(d)), A)
,

then `(d) | R. Since d and `(d) are coprime, the number of possible values of R is at most

x1/2A−1/2
∑
d

1

d · `(d)
, (4.5)
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where the sum is over d satisfying (4.4). Rewrite the sum in the form∑
e≤x1/2

1

e

∑
d : `(d)=e

1

d
. (4.6)

We estimate the inner sum by partial summation. Fix e ≤ x1/2. Note that if `(d) = e, then
rad(ϕ(d)) | Ae, and so the number of possible values of ϕ(d), given A and e, is bounded by
L(x)o(1) (by Lemma 3.2). It now follows from Theorem B that

G(t) : = #{d ≤ t : `(d) = e}
≤ L(x)o(1) · t/L(t)1+o(1) (as x→∞),

uniformly for e ≤ x1/2 and t ∈ [x1/2A−1/2L(x)−1/2, x1/2A−1/2]. So the inner sum in (4.6) is
at most∫ x1/2A−1/2

x1/2A−1/2L(x)−1/2

dG(t)

t
≤ G(x1/2A−1/2)

x1/2A−1/2
+

∫ x1/2A−1/2

x1/2A−1/2L(x)−1/2

G(t)

t2
dt ≤ 1

L(x)1/2+o(1)
,

as x → ∞. Substituting into (4.6) and then (4.5), we obtain the claimed upper bound on
the number of possibilities for R.

5. Problems from the literature

5.1. H-perfect numbers

Harborth [14] has considered another variant of the perfect numbers for which the set of
examples is provably infinite. If n is a natural number, let S range over all possible subsets
of divisors of n, and put

S(n) =
∑
S

∑
d∈S

d.

Observe that every divisor d of n occurs in precisely 2d(n)−1 subsets S , so that S(n) =
σ(n) · 2d(n)−1. We will say n is H-perfect if n | S(n). (So, e.g., the H-perfects include all
multiply perfect numbers.) Harborth showed that the number of H-perfect n ≤ x exceeds

log x · log log x

2 log 2
, (5.1)

but remarks that

Eine vernünftige Abschätzung nach oben scheint sich nicht so einfach zu ergeben.1

1A reasonable upper bound does not seem so easy to obtain.
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Our purpose here is to show that Harborth’s lower bound may be considerably strengthened
and to establish “eine vernünftige Abschätzung nach oben”. We begin with a simple charac-
terization of H-perfect numbers. As before, we write σ(n)/n = N/D, where N(n) and D(n)
are coprime natural numbers.

Lemma 5.1. The natural number n is H-perfect if and only if D(n) is a power of 2.

Proof. Suppose that n is H-perfect. Then n divides S(n) = σ(n) · 2d(n)−1, and so D(n) =
n/ gcd(n, σ(n)) divides 2d(n)−1. Thus, D(n) is a power of 2. Conversely, suppose that D(n) =
2t for some integer t ≥ 0. Since D(n) divides n, we have t = Ω(D(n)) ≤ Ω(n) =

∑
p`|n 1 ≤

d(n)− 1. Thus, D(n) = 2t | 2d(n)−1 and

n = gcd(n, σ(n)) ·D(n) | σ(n) · 2d(n)−1 = S(n),

so that n is H-perfect.

The following lower bound substantially strengthens (5.1).

Proposition 5.2. As x→∞, the number of n ≤ x which are H-perfect is at least

exp((log x)(log 2+o(1))/ log3 x).

Proof. Let y →∞, and choosem ≤ y so that d(m) is maximal. Consider numbers n = 2m−1`,
where ` runs over all divisors of 2m − 1. Then

σ(n)

n
=

(σ(2m−1)/`)σ(`)

2m−1
,

so that D(n) | 2m−1, and hence D(n) is a power of 2. So n is H-perfect. Moreover, the
number of such n is at least

d(2m − 1) ≥ 2ω(2
m−1) ≥ 1

4
2d(m) ≥ exp(y(log 2+o(1))/ log2 y),

and each such n belongs to [1, 22y]. As in the proof of Theorem 1.1, solving for y in terms of
X := 22y completes the argument.

The upper bound is more straightforward. Indeed, since D(n) must be a power of 2 and
only O(log x) such powers appear below x, Theorem A immediately gives the following:

Proposition 5.3. For x ≥ 1, the number of H-perfect n ≤ x is bounded by xO(1/
√

log2 x).

14



5.2. Harmonic and superharmonic numbers

We make some remarks about harmonic numbers, first studied by Ore [21] (but named by
Pomerance in [23]), and superharmonic numbers, recently introduced by Cohen [4]. The
natural number n is said to be harmonic if the harmonic mean of its divisors is an integer.
By a short calculation, n is harmonic precisely when σ(n) | n · d(n).

The distribution of harmonic numbers was studied by Kanold [17], who showed that the
count of such numbers in [1, x] is bounded by x1/2+o(1), as x → ∞. This can be easily
improved by using a theorem of Wirsing [29], which we quote as Theorem C.

Theorem C. Let x ≥ 1, and let α be a positive rational number. The number of n ≤ x with
σ(n)/n = α is bounded by xO(1/ log2 x).

Proposition 5.4. The number of harmonic n ≤ x is bounded by xO(1/ log2 x).

Proof. Suppose that n is harmonic. Put k = n · d(n)/σ(n), so that σ(n)/n = d(n)/k. Since
σ(n)/n ≥ 1, we have

k ≤ d(n) ≤ max
m≤x

d(m) ≤ xO(1/ log2 x).

(Here we again use [15, Theorem 317].) Thus, the fraction σ(n)/n is restricted to xO(1/ log2 x)

possible values. But by Theorem C, each value corresponds to at most xO(1/ log2 x) possibilities
for n.

Cohen [4] calls n superharmonic if σ(n) | nk · d(n) for some natural number k. While it
is not known whether or not there are infinitely many harmonic numbers, Cohen observes
[4, Corollary 3] that there are infinitely many superharmonic numbers n. In fact, using an
algorithm similar to our Algorithm A, he proves [4, Theorem 4] that for any N , there is a
superharmonic number n for which N | n.

Call a number n prime-deficient if every prime dividing σ(n) divides n. (Numbers of
this kind for which ω(n) is bounded have been studied by Luca [19].) We can treat the
prime-deficients by a modification of the argument offered for Lemma 4.3. Replace p − 1
with p+ 1 in the equation (4.2) defining admissibility, and replace P with the set of primes
p ∈ (log x, z] with P (p + 1) ≤ log x/ log log x. The proof of Lemma 4.3 gives that if η
is admissible, then there are at least xη+o(1) prime-deficient values of n ≤ x. In fact, the
heuristic argument following Lemma 4.3 yields that the number of prime-deficient n ≤ x
should be at least x/L(x)1+o(1). Clearly, every prime-deficient n is superharmonic, so this
also serves as a lower bound for the count of superharmonic numbers.

We now demonstrate a matching upper bound. This strengthens [4, Theorem 7], where
an upper bound of the form x/ exp(c(log x)1/3) was proved.

Theorem 5.5. As x→∞, the number of superharmonic n ≤ x is at most x/L(x)1+o(1).
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Proof. We fix ε > 0, and we show that for large x, the number of superharmonic n ≤ x
is at most x/L(x)1−ε. Fix a natural number K with 1

K
< ε

2
. Write n = AB, where A is

K-free, B is K-full, and gcd(A,B) = 1. We can assume that B ≤ L(x), since the number of
exceptional n (even ignoring the superharmonic condition) is at most

x
∑

B>L(x)
B K-full

B−1 < x/L(x)1−ε/2,

once x is large.

Let d be the output of Algorithm B when m = A. We can assume that d > x/L(x).
Indeed, since A is K-free, the remark following Lemma 3.1 shows that if d ≤ x/L(x), then
A belongs to a set of size at most

x

L(x)
· xOK(1/ log2 x) =

x

L(x)1+o(1)
.

Since B ≤ L(x) and B is K-full, the number of possibiliites for B is smaller than L(x)ε/2 for
large x. So the number of possibilities for n = AB with d ≤ x/L(x) is at most x/L(x)1−2ε/3

for large x, which is negligible.

To count the remaining n, we fix both B and D := d(n). For n ≤ x, we have d(n) ≤
x1/ log2 x for large x, and so the number of possibilities for D is L(x)o(1). Since d ‖ A ‖ n, we
see that σ(d) | σ(n). But n is superharmonic, so that rad(σ(d)) | ABD, and so defining

`(d) :=
rad(σ(d))

gcd(rad(σ(d)), BD)
,

we have that `(d) | A. Since gcd(d, σ(d)) = 1, we see that d · `(d) | A. Since A ≤ x, the
number of possibilities for A is at most x

∑
d

1
d·`(d) , where the sum is over d ∈ (x/L(x), x].

A similar sum appeared in the proof of Theorem 4.4. Proceeding as in that argument, and
invoking the σ-analogue of Theorem C (which is proved in the same way), we find that the
number of possibilities for A is at most x/L(x)1+o(1). Since the number of possibilities for
the pair (B,D) is at most L(x)ε/2L(x)o(1), the number of remaining possibilities for n is at
most x/L(x)1−ε/2+o(1).

6. Concluding remarks

Rivera [27] has asked whether any numbers n are simultaneously prime-perfect and ϕ-perfect.
Several examples were subsequently found by Luke Pebody (ibid.); his smallest is n =
2 · 34 · 5 · 7 · 11 · 133 · 173 · 292 · 313 · 372 · 672, for which

σ(n) = 216 · 37 · 52 · 74 · 112 · 132 · 17 · 29 · 31 · 37 · 672

and
ϕ(n) = 217 · 39 · 52 · 7 · 11 · 132 · 172 · 29 · 312 · 37 · 67.
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Probably there are infinitely many such n, but this may be difficult to show. In fact, we do
not even see how to obtain infinitely many n for which rad(ϕ(n)) = rad(σ(n)).

We are morally certain that each even squarefree integer belongs to the range of the
functions rad(ϕ(n)) and rad(σ(n)). In fact, we believe that each appears infinitely often in
both ranges, but even the weaker version of the claim appears difficult. We can at least
prove that both ranges contains a positive proportion of the squarefree numbers. In fact,
this is true even if n is restricted to primes p. To see this, we recall a result of Erdős and
Odlyzko [9].

Theorem D. The set of odd natural numbers k with the property that k · 2n + 1 is prime for
some n ≥ 1 is a set of positive lower density. The same holds for k · 2n − 1.

For a prime p = k · 2n + 1 as above, rad(ϕ(p)) = 2 · rad(k). Thus, our claim about the
image of rad(ϕ(p)) is a consequence of the following elementary lemma. Similarly, the claim
for rad(σ(p)) follows from the lemma and the second half of Theorem D.

Lemma 6.1. If A is a set of positive lower density, then rad(A ) := {rad(a) : a ∈ A } also
has positive lower density.

Proof. Fix z so that the set of natural numbers with squarefull part > z has upper density
smaller than the lower density of A . Discarding from A those integers with squarefull part
> z, we can assume that the squarefull part of each a ∈ A belongs to the set S of squarefull
numbers ≤ z. Put m := #S .

By hypothesis, there is a number d > 0 and a real x0 so that 1
x
#A ∩ [1, x] ≥ d for all

x ≥ x0. We claim that rad(A ) has lower density at least d/m. Let x ≥ x0. For some s ∈ S ,
the set As(x) of a ∈ A ∩ [1, x] with squarefull part s has size at least dx/m. The function rad
restricted to As(x) is 1–1 and maps elements to new numbers which are not larger. Hence,
rad(A ) has at least dx/m elements in [1, x].
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[8] P. Erdős, F. Luca, and C. Pomerance, On the proportion of numbers coprime to a given
integer, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc.,
Providence, RI, 2008, pp. 47–64.
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cerning the arithmetical functions ϕ and σ, Colloq. Math. 92 (2002), 111–130.

[21] O. Ore, On the averages of the divisors of a number, Amer. Math. Monthly 55 (1948),
615–619.

[22] P. Pollack, On the greatest common divisor of a number and its sum of divisors, Michigan
Math. J., to appear.

[23] C. Pomerance, On a problem of Ore: Harmonic numbers, unpublished manuscript
(1973).

[24] , Advanced problem 6036, Amer. Math. Monthly 82 (1975), 671–672, solution in
ibid. 85 (1978), 830.

[25] , Popular values of Euler’s function, Mathematika 27 (1980), 84–89.

[26] V. R. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1975), 214–220.

[27] C. Rivera, Puzzle 451. Prime factors of n, ϕ(n) & σ(n), available online at
http://www.primepuzzles.net/puzzles/puzz 451.htm.

[28] J. Sándor and B. Crstici, Handbook of number theory. II, Kluwer Academic Publishers,
Dordrecht, 2004.

[29] E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959),
316–318.

19


