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Abstract. We discuss recent developments in the field of primality testing since the ap-
pearance [10] of our joint paper On primes recognizable in deterministic polynomial time.

1. Background

The subject of primality testing concerns the creation and analysis of efficient algorithms
for deciding whether a given integer n > 1 is prime or composite. This subject is closely re-
lated to, but distinct from, factoring. Some algorithms, such as trial division, can accomplish
both tasks, but the most efficient methods are tailored to one or the other.

From a practical point of view, the story of primality testing is a simple one. In real-world
applications one does not require mathematical certitude, a tiny possibility of error being
acceptable, so various random algorithms that have been known for decades and are easy to
implement may be used. An example, commonly known as the Miller–Rabin test, runs in
O((logn)2+ǫ) bit operations (using fast arithmetic subroutines) and almost certainly returns
a correct verdict on the primality of a given input n, with the bonus that a composite
verdict is mathematically correct. Even the simple base-2 Fermat congruence 2n−1 ≡ 1
(mod n) when applied to a large random input n almost certainly steers one right (a number
n for which the congruence holds is almost certainly prime, a number n for which it does not
hold is definitely composite). Indeed, as shown by Erdős [6], composite numbers n satisfying
2n−1 ≡ 1 (mod n) are much scarcer than primes. For more details on these and similar tests
see [5] and the references there.

But a problem as fundamental as deciding primality cries out for a thorough mathematical
analysis. Here too, where no possibility of error is to be tolerated, there is both a theoretical
and practical side. The practical primality tester has specific numbers n in mind that are
to be tested, and wishes to implement an algorithm that will give a completely correct
answer. It is possible for such an algorithm to use randomness, where coins are flipped
(figuratively), but there is no doubt in the output, the only issue being the running time of
the algorithm. A simple but illustrative example is that of finding a quadratic nonresidue for
a given prime p. This is an integer k such that the congruence x2 ≡ k (mod p) has no integral
solutions. We know that for an odd prime p exactly (p− 1)/2 choices for k in {1, . . . , p− 1}
are quadratic nonresidues. Moreover, via either Euler’s criterion or the law of quadratic
reciprocity for Jacobi symbols, it is possible to decide quickly (and deterministically) if a
candidate k works or not. So a random and quick method to find a quadratic nonresidue
k is to choose randomly from {1, . . . , p− 1} until one is found. This simple algorithm runs
in expected polynomial time. Remarkably, without assuming an unproved hypothesis (the
Extended Riemann Hypothesis), we know no deterministic method for finding a quadratic
nonresidue that runs in polynomial time.

Long before our article was published, we had the Adleman–Huang test [1], a random
primality test with running time expected to be polynomial (and, as opposed to the Miller–
Rabin test, there is no doubt in the output). Based on the arithmetic of Jacobian varieties
of hyperelliptic curves of genus 2 (and also on elliptic curves), it is a very difficult result,
requiring an entire volume for its analysis. Other tests, based on elliptic curves (practical
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improvements of the Goldwasser–Kilian test) are not theoretically complete, but stand as
excellent practical primality proving algorithms for those who do not wish to have any
possibility of error. Again, see [5] for more on this.

And this brings us to the last holdout of the theorist: a deterministic primality test
that runs in polynomial time. Such a test has long been known (in fact, a version of the
Miller–Rabin test), but it relies on the Extended Riemann Hypothesis in a similar way
as the quadratic nonresidue problem mentioned above. Withot any unproved hypothesis,
we had the APR test [2] with complexity O((logn)c log log logn), tantalizingly close to being
polynomial. We also had an interesting result of Pintz, Steiger, and Szemerédi that presented
a set of primes, with counting function to x of about x2/3, which could be recognized in
deterministic polynomial time. These primes p were characterized by p − 1 being divisible
by a very large power of 3.

In our paper we showed that any prime p can be proved prime by a deterministic algorithm
in polynomial time, provided we have a fully-factored divisor d > pǫ of p− 1. Furthermore,
a simple procedure identifies more than x1−ǫ primes p up to x with such a fully-factored
divisor in p− 1, and so we have many primes that are recognizable in polynomial time. The
case when d > p1/2+ǫ was done earlier by Fürer [9] (we only learned of this paper recently),
and the case when p− 1 itself is fully factored was rediscovered by Fellows and Koblitz [8].

Our paper had one practical component for those interested in implementing a primality
test. The so-called “n− 1 test” of Brillhart, Lehmer, and Selfridge requires a fully-factored
divisor of p − 1 larger than p1/3. Our paper was able to reduce the exponent 1/3 in this
practical test to 3/10. (For positive exponents smaller than 3/10 our algorithm still has poly-
nomial complexity, but it is not so practical.) More recently, an analog of this improvement
was accomplished for the “n + 1 test”, see [5], though it is no longer deterministic.

2. Derandomization and the AKS algorithm

By far the most important development since our article was the AKS algoritm [3], named
for its inventors, Agrawal, Kayal, and Saxena. Their algorithm is deterministic and it dis-
tinguishes between primes and composites in polynomial time. Further it does not depend
on any unproved hypotheses for its analysis.

Like the algorithm in our paper and in many other approaches to primality testing, the
AKS algorithm either recognizes n as composite by a series of simple tests, or if n passes all
of these tests, a group is built up that is so large that n is inescapably prime. (For more on
this line of thought see [12].)

Two analyses of the AKS algorithm are presented in [3], a more elementary analysis using
effective tools and running time O((logn)10.5+ǫ), and an analysis using ineffective tools and
running time O((logn)7.5+ǫ). Both of these estimates are upper bounds for the true running
time, conjectured to be O((logn)6+ǫ). A version of the AKS algorithm with this running
time and effective tools is presented in the preprint [11] and is described in [5].

Unfortunately, the AKS algorithm has not proved to be numerically competitive with
previous primality tests. Even a random version with expected running time O((logn)4+ǫ)
(see [4]) is not competitive.

In [3] a conjecture is made that suggests a version of the algorithm has running time
O((logn)3+ǫ). Using a heuristic of Erdős [7] on Carmichael numbers, Lenstra and Pomerance
(unpublished) have given a plausibility argument that this AKS conecture is false.

Since we knew already a random polynomial-time algorithm for primality testing, the AKS
test might be thought of as a derandomization, even though it bears little resemblance to
the Adleman–Huang test. Similarly, the Fürer and Fellows–Koblitz algorithms for proving
the primality of a prime p where a large part of p− 1 is factored are derandomizations of an
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algorithm of Lucas, as improved by Proth, Pocklington, and Lehmer early in the twentieth
century. Our paper as well contains a derandomization (and extension) of the Brillhart,

Lehmer, Selfridge n − 1-test, as mentioned. In [13], Źra lek applied some of the methods of
our paper to derandomize a factorization algorithm, namely the p − 1 method of Pollard.
Here, one is expected to find quickly those prime factors p of n which have the additional
property that all of the prime factors of p−1 are small. (For this reason, some implementers
of the RSA cryptosystem use prime factors p, q where both p−1, q−1 have large prime factors,
so-called safe primes.) The Pollard p− 1 method uses randomness and Źra lek derandomizes
it. In a later paper he again uses similar ideas, this time to factor polynomials over some
finite fields Fp.

References

[1] L. M. Adleman and M.-D. A. Huang, Primality testing and two-dimensional abelian varieties over finite

fields, Lecture Notes in Math. 1512, Springer-Verlag, Berlin, 1992, 142 pp.
[2] L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite

numbers, Ann. of Math. 117 (1983), 173–206.
[3] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. 160 (2004), 781–793.
[4] D. Bernstein, Proving primality in essentially quartic random time, Math. Comp. 76 (2007), 389–403.
[5] R. Crandall and C. Pomerance, Prime numbers: a computational perspective, 2nd ed., Springer, New

York, 2005.
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