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The Erdős conjecture on primitive sets

Carl Pomerance

Dartmouth College (emeritus)

University of Georgia (emeritus)

Joint work with Jared Duker Lichtman



Suppose that M is a set of multiples: mn ∈M whenever m ∈M .

Some examples:

● {m ∈ N ∶m ≥m0},

● {m ∈ N ∶ ω(m) ≥ k0} (where ω(m) = ∑p∣m1),

● {m ∈ N ∶ Ω(m) ≥ k0} (where Ω(m) = ∑pa∣m1),

● {m ∈ N ∶ σ(m)/m > 2} (where σ(m) = ∑d∣m1),

● {m ∈ N ∶ σ(m)/m ≥ 2}.
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A set of multiples M is like an ideal, but it is not necessarily

closed under addition.

Like an ideal in Z, a set of multiples in N is generated by

minimal elements. In particular, if A = A(M) is the subset of M

consisting of positive integers that are not divisible by any

smaller element of M , then evidently

M = {an ∶ a ∈ A, n ∈ N}.

Further, the set A is primitive: no element divides another.
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Here are the primitive sets corresponding to our examples:

● A({m ∈ N ∶m ≥m0}) = ( a finite set ) ∪ {p ≥m0 ∶ p prime},

● A({m ∈ N ∶ ω(m) ≥ k0}) = {m ∈ N ∶ ω(m) = Ω(m) = k0},

● A({m ∈ N ∶ Ω(m) ≥ k0}) = {m ∈ N ∶ Ω(m) = k0},

● A({m ∈ N ∶ σ(m)/m > 2}) = {m ∈ N ∶m is primitive abundant},

● A({m ∈ N ∶ σ(m)/m ≥ 2}) = {m ∈ N ∶m is primitive nondeficient}.

3



Lemma. If M is a set of multiples and ∑a∈A(M) 1/a < ∞, then M

has a natural density.

This Lemma applies to just one of our example sets: The
primitive nondeficient numbers have a finite reciprocal sum
(Erdős, 1934), so the nondeficient numbers have an asymptotic
density. We now know (Kobayashi, 2010) that this density is
between 0.2476171 and 0.2476475. And we know (Lichtman,
2018) that the sum of reciprocals of primitive nondeficient
numbers is between 0.34842 and 0.37937.

The first 3 sets of multiples presented all have asymptotic
density 1. The set of abundant numbers has the same density
as the set of nondeficient numbers, since the only difference is
the set of perfect numbers, which can be shown by other
methods to have density 0.
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One might guess that a primitive set always has asymptotic

density 0. It’s true for our 5 examples, and more generally, it’s

true that the lower asymptotic density of a primitive set must

be 0. Somewhat counter-intuitively, the upper asymptotic

density need not be 0 !

Here’s a construction. The set of integers in the interval (x,2x]
is primitive; let D(x) be the asymptotic density of the set of

multiples. We know after Besicovitch (1934) that

lim infD(x) = 0. In fact, after work of Erdős, Tenenbaum, and

Ford, we now know that

D(x) ≍ 1

(logx)c(log logx)3/2, c = 1 − 1 + log log 2

log 2
= 0.08607 . . . .

5



But already, just from Besicovitch’s result, we can construct

primitive sets with upper asymptotic density arbitrarily close to

1/2. Namely, choose a very briskly increasing sequence

x1, x2, . . . with D(x1) very small and D(xj) ↓ 0. Take all numbers

in (x1,2x1], all numbers in (x2,2x2] not divisible by any number

in (x1,2x1], all numbers in (x3,2x3] not divisible by any number

previously chosen, etc.

This result is best possible: The upper asymptotic density of a

primitive set is always < 1/2.
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From now on we only consider primitive sets A ≠ {1}.

Theorem (Erdős, 1935). If A is a primitive set, then

∑
a∈A

1

a loga
< ∞.

In fact, the sum ∑a∈A1/(a loga) is uniformly bounded as A

varies over primitive sets.

Let f(A) = ∑a∈A1/(a loga). With P the set of primes, let

C = f(P) = 1.63661632336 . . . , the calculation done by Cohen.

Conjecture (Erdős, 1988). For A primitive, f(A) ≤ C.
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Conjecture (Erdős, 1988). For A primitive, f(A) ≤ C, where
f(A) = ∑a∈A1/(a loga).

What do we know about f(A)?

Erdős, Zhang (unpublished): f(A) < 2.886.

Robin (unpublished): f(A) < 2.77.

Erdős, Zhang (1993): f(A) < 1.84.

Clark (1995): f(A) ≤ eγ = 1.78107 . . . .

The first two results used the original Erdős argument, but the
1993 paper used a new argument. We do not understand the
Clark argument, nor have we been successful in duplicating the
result.
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Let P(A) denote the set of primes which divide some member

of A. Note that the Erdős conjecture is equivalent to the

assertion that

f(A) ≤ f(P(A))

for all primitive sets A. Indeed, if f(A) > f(P(A)) for some

primitive set A, let A′ be A together with every prime not in

P(A), so that A′ is primitive, P(A′) = P, and f(A′) > f(P).
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Let Nk = {n ∶ Ω(n) = k}.

Zhang, (1991): f(A) ≤ C if each a ∈ A has Ω(a) ≤ 4.

Zhang, (1993): For each k ≥ 2, f(Nk) < f(N1) = C.

Banks, Martin, (2013): If ∑p∈P(A) 1/p < 1.7401 . . . , then

f(A) ≤ f(P(A)).

Banks, Martin, (2013): Conjecture: f(N1) > f(N2) > f(N3) . . . .

Bayless, Kinlaw, Klyve, (2018): f(N2) > f(N3).
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Lichtman, P, (2018). We have the following results.

● f(A) < eγ + 10−5.

● If no member of A is divisible by 8, then f(A) < C + 10−5.

● There is an absolute constant c > 0 such that f(Nk) > c for
all k.

● Assuming RH and LI, there is a set of primes P0 of relative
lower logarithmic density ≥ 0.995 such that f(A) ≤ f(P(A))
when P(A) ⊂ P0. Unconditionally, P0 contains all of the odd
primes up to exp(106).
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Note: The relative lower logarithmic density of a set of primes

P0 is

lim inf
x→∞

1

log logx
∑
p ∈P0
p≤x

1

p
.

Notation: For an integer a ≥ 2, let

p(a) ∶ = min{p ∶ p ∣ a},
P (a) ∶ = max{p ∶ p ∣ a}.
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A slightly cleaned up version of the 1935 Erdős argument:

For a ∈ A, let Sa = {ba ∶ p(b) ≥ P (a)}. The asymptotic density of Sa
is

δ(Sa) = g(a) =
1

a
∏

p<P (a)
(1 − 1

p
) .

Moreover the sets Sa, as a varies over A, are pairwise disjoint

(since A is primitive). The union of these sets is contained in

the set of multiples of members of A, so

∑
a∈A

g(a) = ∑
a∈A

1

a
∏

p<P (a)
(1 − 1

p
) ≤ 1.

But ∏p<P (a)(1 − 1/p) ≫ 1/ log(P (a)) ≥ 1/ loga, so that f(A) ≪ 1.
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To do a little better, we should be more careful with the step

where we say ∏p<P (a)(1 − 1/p) ≫ 1/ log(P (a)) > 1/ loga.

Note that as x→∞, we have ∏p≤x(1 − 1/p) ∼ 1/(eγ logx). Also, if

a is composite, then a ≥ 2P (a).

Lemma. We have ∏p≤x(1 − 1/p) > 1/(eγ log(2x)).

Conclude: If a is composite, then ∏p<P (a)(1 − 1/p) > 1/(eγ loga).
And if every member of A is composite, then f(A) < eγ.
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To go further, we consider various subsets of A defined by the

least prime factor of the elements: Let A(q) = {a ∈ A ∶ p(a) = q}.

Then

∑
a∈A(q)

g(a) = ∑
a∈A(q)

δ(Sa) ≤ δ({ba ∶ a ∈ A(q), p(b) ≥ q}) = g(q).

Note that if q ∉ A(q), then every member of A(q) is composite.

This implies g(a) > 1/(eγa loga) for a ∈ A(q), so that

f(A(q)) < eγg(q) = eγ

q
∏
p<q

(1 − 1

p
) .

Else, q ∈ A(q), so that A(q) = {q} and f(A(q)) = 1/(q log q).

Say a prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q.

So, if q is Mertens, then f(A(q)) ≤ 1/(q log q).
Thus, if every prime in P(A) is Mertens, then f(A) ≤ f(P(A)).
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 − 1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 − 1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
But every odd prime up to p108 is indeed Mertens. ,

Theorem (Lamzouri, 2016). Assuming RH and LI, the set of

real numbers x with eγ∏p≤x(1 − 1/p) < 1/ logx has logarithmic

density 0.99999973 . . . .
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Corollary (Lichtman, P, 2018). Assuming RH and LI, the set

of Mertens primes has relative logarithmic density > 0.995.

We could push the verification of Mertens primes beyond the

108th prime, but instead, here’s an alternative that allows us to

push things much higher.
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Say a pair of primes q, r is a Mertens pair if q ≤ r and

∏
q≤p<r

(1 − 1

p
) ≥ log q

log qr
.

Recall that with A(q) denoting the set of a ∈ A with p(a) = q, we

have

∑
a∈A(q)

1

a
∏

p<P (a)
(1 − 1

p
) ≤ 1

q
∏
p<q

(1 − 1

p
) .

So, if q,P (a) is a Mertens pair for all a ∈ A(q), then

1

q
≥ ∑

a∈A(q)

1

a
∏

q≤p<P (a)
(1 − 1

p
) ≥ ∑

a∈A(q)

1

a
⋅ log q

log(qP (a))
.
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Recapitulating, if q,P (a) is a Mertens pair for all a ∈ A(q), then

∑
a∈A(q)

1

a log(qP (a))
≤ 1

q log q
.

In particular, if q ∉ A(q), then log(qP (a)) ≤ loga, so that

f(A(q)) ≤ 1/(q log q). This holds with equality if q ∈ A(q). We

conclude that if every a ∈ A has p(a),P (a) a Mertens pair, then

the Erdős conjecture is true for A, i.e.,

f(A) ≤ f(P(A)).
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Note that if q is a Mertens prime, then q, r is a Mertens pair for

all primes r ≥ q. Indeed,

∏
q≤p<r

(1 − 1

p
) ≥ eγ log q∏

p<r
(1 − 1

p
) > eγ log q

eq log(2r)
≥ log q

log(qr)
.

So, q, r is a Mertens pair for all odd primes q among the first

108 primes. But the play we have in going from log r to log(qr)
gets better when q is large, which now can be assumed. As

well, the error in Mertens theorem is smaller for large cut-offs.

Using these ideas, we can show every q, r is a Mertens pair for

the odd primes ≤ exp(106).

One would have a very hard time giving an explicit

counterexample to the Erdős conjecture using odd primes!
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The Erdős–Zhang approach

They have a two-pronged argument. First, they get an upper

bound for f(A) when p(A), the least prime dividing any member

of A, is large. Then, they use a reverse recurrence to

step-by-step lower p(A).

The upper bound when p(A) is large is done by a clever

induction and estimates for the nth prime pn, when n is large.

Using only this first part of their argument, together with the

Mertens primes, we can show:

Lichtman, P, (2018). If A is a primitive set of odd numbers,

then f(A) < f(P(A)) + 10−5.
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Suppose now that A has no member divisible by 8. Using the
theorem for the odd case, if 2 ∈ A, then

f(A) = f(A∖{2}) + 1

2 log 2

< f(P(A)∖{2}) + 10−5 + 1

2 log 2
≤ C + 10−5.

So suppose 2 ∉ A. Let A0 denote the odd members of A, let A1
the members of A that are 2 mod 4, and A2 the members of A
that are 4 mod 8. Let B1 = A1/2, B2 = A2/4, so that B1,B2 are
primitive sets of odd numbers. We have

f(A1) = ∑
b∈B1

1

2b log(2b)
≤ 1

2
f(B1)

and similarly, f(A2) ≤ 1
4f(B2) (assuming 4 ∉ A). Thus,

f(A) = f(A0) + f(A1) + f(A2) < (C + 10−5 − 1

2 log 2
)(1 + 1

2
+ 1

4
) < C.
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If 4 ∈ A, then

f(A) < (C + 10−5 − 1

2 log 2
)(1 + 1

2
) + 1

4 log 4
< C.

Thus, the Erdős conjecture is true within 10−5 for primitive sets

not containing a multiple of 8. (Oddly, the same is true for

primitive sets that contain no number that is 4 mod 8.)
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Toward Clark’s claim that f(A) ≤ eγ

Since eγ = 1.781072 . . . and C = 1.636616 . . . , and considering

how close to C we have been able to get, it would seem easy to

not only prove that eγ always works, but even surpass it. But so

far we have been unsuccessful. However, we have gotten close.

There is a chain of inferences we can use. First, if 2 ∈ A, we

have the upper bound C + 10−5, so we may assume that the

even members of A are composite. We’ve seen that when A(q)
is composite, we have

f(A(q)) < e
γ

q
∏
p<q

(1 − 1

q
) ,

so in the case q = 2 we have f(A(2)) < eγ/2.
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We try to do a little better. Suppose 3 ∈ A. Then, no member
of A(2) is divisible by 3, and the earlier argument can then be
improved to f(A(2)) < eγ/3. This is enough to get f(A) < eγ, so
we may assume 3 ∉ A.

Knowing that 3 ∉ A then gives us that f(A(3)) < eγ/6, and this is
a noticeable improvement over 1/(3 log 3), which would have
been f(A(3)) if 3 ∈ A. (For the record, eγ/6 = 0.29684 . . . and
1/(3 log 3) = 0.30341 . . . .)

We then show that we may assume 5 ∉ A, 7 ∉ A, etc., up to the
prime 234,473, after which the argument breaks down. Using
that the remaining primes to the 108th prime are Mertens, and
the Erdős–Zhang argument for the higher cases, gives us the
earlier announced result.

Lichtman, P, (2018). For any primitive set A, f(A) < eγ +10−5.
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Recall the Banks–Martin conjecture that

f(N1) > f(N2) > f(N3) > . . . , where Nk is the set of n with

Ω(n) = k. We prove that f(Nk) ≫ 1, that is, the numbers f(Nk)
are bounded above 0.

The idea is to use the Sathe–Selberg theorem (or an earlier

result of Erdős) which implies that when

∣k − log logx∣ ≤
√

log logx, we have uniformly as x→∞

∑
n≤x

Ω(n)=k

1 ∼ x

logx

(log logx)k
k!

.

Looking at this from another angle, the asymptotic holds

uniformly for all values of x between ee
k

and ee
k+

√
k

as k →∞.
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Then for 1 ≤ j ≤
√
k, we use the asymptotic formula, partial

summation, and Stirling to show that

∑
n∈Nk

ee
k+j−1<n≤eek+j

1

n logn
≫ 1√

k
.

Now sum on j.

Essentially the same argument shows that f(N0
k
) ≫ 1, where N0

k
is the set of squarefree members of Nk.
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To put the Erdős conjecture in perspective, one might like to

look at other “metrics” than 1/(a loga).

● In Banks–Martin they look at fc(A) = ∑a∈A1/ac, where c > 1.

They show that fc(A) ≤ fc(P(A)) if c > 1.1403659.

● Let g(A) = ∑a∈A g(a), where g(a) = a−1∏p<P (a)(1 − 1/p). We

showed above that g(A(q)) ≤ g(q) for every prime q. Thus,

g(A) ≤ g(P(A)) for every primitive set A.

● Consider h(A) = ∑a∈Ah(a), where h(a) = 1/(a logP (a)) is

“asymptotically proportional” to g(a). Here, the Erdős

conjecture fails. We have computed that h(N2) > h(N1).
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Some unsolved problems:

● Prove the Erdős conjecture for odd numbers, or for
squarefree numbers. (We have it for squarefree even
numbers.)

● We’ve shown that if A is a primitive set of even numbers,
then f(A) < eγ/2. Do better. (We conjecture
f(A) ≤ 1/(2 log 2) = 0.7213 . . . , while eγ/2 = 0.8905 . . . .)

● Prove the logarithmic density of Mertens primes is the same
as the logarithmic density in Lamzouri’s theorem (which is
the same as in the π(x), li(x) race). Feel free to assume RH
and LI !
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● Is there a “race” with ∑p≥x1/(p logp) and 1/ logx? We can

show that if ∑p≥q 1/(p logp) ≤ 1/ log q for every prime q ≥ 5,

then the Erdős conjecture holds for numbers coprime to 6.

We have shown that the inequality holds for 3 < q ≤ p108.
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Lets close with an easier, and now solved problem: What is the

fewest number of primitive sets whose union contains [2, x]?
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Lets close with an easier, and now solved problem: What is the

fewest number of primitive sets whose union contains [2, x]?

Well, with primitive sets of the form [y,2y), we can cover [2, x]
with ⌊logx/ log 2⌋ primitive sets. Is this best possible?
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Lets close with an easier, and now solved problem: What is the

fewest number of primitive sets whose union contains [2, x]?

Well, with primitive sets of the form [y,2y), we can cover [2, x]
with ⌊logx/ log 2⌋ primitive sets. Is this best possible?

Yes. The powers of 2 must be in different primitive sets. (Ayla

Gafni, last week at the CANT problem session in response to

the question of Lichtman)
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Merci
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