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A subset A of the positive integers is said to be primitive if no
member of A divides another.

Some examples:

1. The set P of prime numbers.

2. More generally, the set Nk = {n ∶ Ω(n) = k}, where Ω(n) is the
number of prime factors of n counted with repetition.

3. The set (x,2x] ∩N.

4. With σ the sum-of-divisors function, the set

A = {n ∈ N ∶ σ(n)/n ≥ 2, σ(d)/d < 2 for all d ∣ n, d < n}.
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This last example goes back to Pythagoras.

He was quite interested in the sum-of-divisors function σ, and

he and his followers classified the natural numbers into 3

categories:

● deficient: σ(n)/n < 2. E.g., n = 1, 2, 3, 4, 5, 7, 8, 9, 10, . . . .

● perfect: σ(n)/n = 2. E.g., n = 6, 28, 496, 8128, . . . .

● abundant: σ(n)/n > 2. E.g., n = 12, 18, 20, 24, . . . .

What’s with “2”?
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This last example goes back to Pythagoras.

He was quite interested in the sum-of-divisors function σ, and
he and his followers classified the natural numbers into 3
categories:

● deficient: σ(n)/n < 2. E.g., n = 1, 2, 3, 4, 5, 7, 8, 9, 10, . . . .

● perfect: σ(n)/n = 2. E.g., n = 6, 28, 496, 8128, . . . .

● abundant: σ(n)/n > 2. E.g., n = 12, 18, 20, 24, . . . .

What’s with “2”? Well, it was actually s(n) = σ(n) −n that was
considered, and then a number is deficient, perfect, or
abundant if s(n)/n < 1, = 1, > 1, respectively.
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Do these 3 sets have asymptotic densities?

It’s easy to see that the perfect numbers have density 0, since

already from Euler we know that a perfect number must be of

the form pm2 where p is a prime that divides σ(m2).

An easy observation: If n is not deficient, i.e., σ(n)/n ≥ 2, then

every multiple of n is not deficient.

Proof. σ(n)/n = ∑d∣n1/d, and this sum is only larger when

applied to a multiple of n. 2

An easy consequence: The nondeficient numbers are

completely determined by the minimal ones in the divisibility

relation, that is, those nondeficient numbers that are not a

multiple of a smaller nondeficient number: 6, 20, 28, 70, 88 . . . .
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An easy consequence: The nondeficient numbers are
completely determined by the minimal ones in the divisibility
relation, that is, those nondeficient numbers that are not a
multiple of a smaller nondeficient number: 6, 20, 28, 70, 88 . . . .

They form a primitive set and it is where Erdős entered the
picture.

Erdős (1934). The reciprocal sum of the primitive nondeficient
numbers is finite.

Corollary. The set of nondeficient numbers have a positive
density.

(Since (1/x)∑n≤xσ(n)/n ∼ π2/6 < 2 as x→∞, the density of the
nondeficient numbers is < 1, so the set of deficient numbers
also has a positive density.)
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Pythagoras of Samos Leonhard Euler Paul Erdős
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We now know (Kobayashi, 2010) that the density of the
abundant numbers (= the density of the nondeficient numbers)
lies between 0.2476171 and 0.2476475.

And we know (Lichtman, 2018) that the sum of reciprocals of
the primitive nondeficient numbers is between 0.34842 and
0.37937.

Mitsuo Kobayashi Jared Lichtman
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Actually, it was known before Erdős that the density of the

nondeficient numbers exists:

Davenport (1933) showed the density D(u) of {n ∶ σ(n)/n ≤ u}

exists, and that D(u) is continuous.

Davenport strongly used a technical criterion of Schoenberg,

who in 1928 proved an analogous result for the density of

numbers n with n/ϕ(n) ≤ u. Here ϕ is Euler’s function.

With his paper on primitive nondeficient numbers in1934,

Erdős began studying this subject, looking for the great

theorem that would unite these threads. His elementary

approach through primitive sets led him to believe that

non-technical methods could be used.
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Harold Davenport Isaac J. Schoenberg

10



This culminated in the Erdős–Wintner theorem in 1939 and
the Erdős–Kac theorem the same year. And so was born the
subject of probabilistic number theory.

But as usual, Erdős was interested in primitive sets for their
own sake, and this led in interesting directions as well.

Aurel Wintner Mark Kac
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One might guess that a primitive set always has asymptotic

density 0. It’s true for our 4 examples, and more generally, it’s

true that the lower asymptotic density of a primitive set must

be 0. Somewhat counter-intuitively, the upper asymptotic

density need not be zero!

Here’s a construction. The set of integers in the interval (x,2x]

is primitive; let D(x) be the asymptotic density of the set of

multiples. We know after Besicovitch (1934) that

lim infD(x) = 0. In fact, after work of Erdős, Tenenbaum, and

Ford, we now know that

D(x) ≍
1

(logx)c(log logx)3/2
, c = 1 −

1 + log log 2

log 2
= 0.08607 . . . .
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Abram Besicovitch Kevin Ford Gérald Tenenbaum
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But already, just from Besicovitch’s result, we can construct

primitive sets with upper asymptotic density arbitrarily close to

1/2. Namely, choose a very briskly increasing sequence

x1, x2, . . . with D(x1) very small and D(xj) ↓ 0. Take all numbers

in (x1,2x1], all numbers in (x2,2x2] not divisible by any number

in (x1,2x1], all numbers in (x3,2x3] not divisible by any number

previously chosen, etc.

This result is best possible: The upper asymptotic density of a

primitive set is always < 1/2.
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Primitive sets continued to be of interest to Erdős throughout

his life.

In 1988, he and Cameron considered counting the subsets of

[1, n] that are primitive, conjecturing the number is α(1+o(1))n

for some α between 1 and 2. They proved that if α exists, it is

between 1.55967 and 1.6.

Very recently, Angelo showed that α exists, and McNew was

able to get a decent error estimate for the “o(1)”. We also have

1.572939 < α < 1.574445,

(McNew for the lower bound, Liu, Pach, & Palincza for the

upper bound).
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Peter Cameron Rodrigo Angelo Nathan McNew
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Hong Liu Péter Pál Pach Richárd Palincza
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And there is the famous Erdős Conjecture on primitive sets,

based on the following old theorem.

Theorem (Erdős, 1935). If A is a primitive set, then

f(A) ∶= ∑
a∈A
a>1

1

a loga
<∞.

In fact, f(A) is uniformly bounded as A varies over primitive

sets.

With P the set of primes, let C = f(P) = 1.63661632336 . . . , the

calculation done by Cohen.

Conjecture (Erdős, 1988). For A primitive, f(A) ≤ C.
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Conjecture (Erdős, 1988). For A primitive,

f(A) ≤ C = 1.63661632336 . . . , where f(A) = ∑a∈A, a>1 1/(a loga).

What do we know about f(A)?

Erdős, Zhang (unpublished): f(A) < 2.886.

Robin (unpublished): f(A) < 2.77.

Erdős, Zhang (1993): f(A) < 1.84.

The first two results used the original Erdős argument, but the

1993 paper used a new argument.
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Zhenxiang Zhang
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Let P(A) denote the set of primes which divide some member

of A. Note that the Erdős conjecture is equivalent to the

assertion that

f(A) ≤ f(P(A))

for all primitive sets A.

Proof. Say f(A) ≤ f(P(A)) for all primitive sets A. If Q is the set

of primes not in P(A), then add 1/(q log q) for q ∈ Q to both

sides. Conversely, say f(A) ≤ C = f(P) for all primitive sets A.

Then subtract 1/(q log q) for q ∈ A from both sides. 2
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Recall that Nk = {n ∶ Ω(n) = k},

P(A) = {p prime ∶ p divides some member of A}.

Zhang (1991): f(A) ≤ C if each a ∈ A has Ω(a) ≤ 4.

Zhang (1993): For each k ≥ 2, f(Nk) < f(N1) = C.

Banks, Martin (2013): If ∑p∈P(A) 1/p < 1.7401 . . . , then

f(A) ≤ f(P(A)).

Banks, Martin (2013): Conjecture: f(N1) > f(N2) > f(N3) > . . . .
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Recall that Nk = {n ∶ Ω(n) = k},

P(A) = {p prime ∶ p divides some member of A}.

Zhang (1991): f(A) ≤ C if each a ∈ A has Ω(a) ≤ 4.

Zhang (1993): For each k ≥ 2, f(Nk) < f(N1) = C.

Banks, Martin (2013): If ∑p∈P(A) 1/p < 1.7401 . . . , then

f(A) ≤ f(P(A)).

Banks, Martin (2013): Conjecture: f(N1) > f(N2) > f(N3) > . . . .

Lichtman (2019): The Banks–Martin Conjecture is false.
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Bill Banks Greg Martin
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Lichtman, P (2019). For A primitive,

● f(A) < eγ = 1.78109 . . . .

● If no member of A is divisible by 8, then

f(A) < f(P(A)) + 2.37 × 10−7.

● Assuming RH and LI, there is a set of primes P0 of relative

lower logarithmic density ≥ 0.995 such that f(A) ≤ f(P(A))

when P(A) ⊂ P0. Unconditionally, P0 contains all of the odd

primes up to exp(106).
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Note: The relative lower logarithmic density of a set of primes

P0 is

lim inf
x→∞

1

log logx
∑
p ∈P0
p≤x

1

p
.

In a new paper Lichtman, Martin, & P show that P0 has

relative lower asymptotic density at least 0.99999973 . . . .

Notation: For an integer a ≥ 2, let

p(a) ∶ = min{p prime ∶ p ∣ a},

P (a) ∶ = max{p prime ∶ p ∣ a}.
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A version of the 1935 Erdős argument:

Let Sa = {ba ∶ p(b) ≥ P (a)}. The asymptotic density of Sa is

δ(Sa) =
1

a
∏

p<P (a)

(1 −
1

p
) .

Moreover the sets Sa, as a varies over a primitive set A, are

pairwise disjoint. So

∑
a∈A

1

a
∏

p<P (a)

(1 −
1

p
) = ∑

a∈A

δ(Sa) = δ (⋃
a∈A

Sa) ≤ 1.

But
1

a
∏

p<P (a)

(1 −
1

p
) ≫

1

a logP (a)
≥

1

a loga
,

so that f(A) ≪ 1.
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To do a little better, we should be more careful with the step

where we say ∏p<P (a)(1 − 1/p) ≫ 1/ log(P (a)) ≥ 1/ loga.

Note that as x→∞, we have ∏p<x(1 − 1/p) ∼ 1/(eγ logx). Also, if

a is composite, then a ≥ 2P (a).

Lemma. For x ≥ 2, we have 1/ log(2x) < eγ∏p<x(1 − 1/p).

Conclude: If a is composite, then 1/ loga < eγ∏p<P (a)(1 − 1/p).

So, if every member of A is composite, then f(A) < eγ, since

f(A) = ∑
a∈A

1

a loga
< eγ ∑

a∈A

1

a
∏

p<P (a)

(1 −
1

p
) = eγ ∑

a∈A

δ(Sa) ≤ eγ.

With a non-strict inequality this much was proved by Clark

(1995). But we show f(A) < eγ for all primitive sets A.
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One path we followed was suggested by the work of Erdős and

Zhang: partition A by the least prime factor of the elements:

Let A(q) = {a ∈ A ∶ p(a) = q}. We’d love to show that

f(A(q)) ≤ 1/(q log q), and this is clear if q ∈ A(q). Now

f(A(q)) <
eγ

q
∏
p<q

(1 −
1

p
) if q ∉ A(q).

Indeed, note that

⋃
a∈A(q)

Sa ⊂ {ba ∶ a ∈ A(q), p(b) ≥ q} ⊂ {n ∶ p(n) = q},

so that

∑
a∈A(q)

δ(Sa) ≤
1

q
∏
p<q

(1 −
1

p
) .
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But in this case every a ∈ A(q) is composite, and we’ve seen

then that
1

a loga
< eγδ(Sa),

so the claim above holds, i.e., if q ∉ A(q),

f(A(q)) = ∑
a∈A(q)

1

a loga
< eγ ∑

a∈A(q)

δ(Sa) ≤
eγ

q
∏
p<q

(1 −
1

p
) .

We’d be laughing if

eγ∏
p<q

(1 −
1

p
) ≤

1

log q
.

In fact, the famous theorem of Mertens says that the left side

is asymptotically equal to the right side as q →∞.
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Say a prime q is Mertens if

eγ∏
p<q

(1 −
1

p
) ≤

1

log q
.

So, if q is Mertens, then f(A(q)) ≤ 1/(q log q) regardless if q ∈ A(q)

or q ∉ A(q). Thus, if every prime in P(A) is Mertens, then

f(A) = ∑
q∈P(A)

f(A(q)) ≤ ∑
q∈P(A)

1

q log q
= f(P(A)).

Franz Mertens
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
But every odd prime up to p108 is indeed Mertens. ,
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
But every odd prime up to p108 is indeed Mertens. ,

Theorem (Lamzouri, 2016). Assuming RH and LI, the set of

real numbers x with eγ∏p≤x(1 − 1/p) < 1/ logx has logarithmic

density 0.99999973 . . . .
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Corollary (Lichtman, Martin, P, 2019). Assuming RH and

LI, the set of Mertens primes has relative logarithmic density

0.99999973 . . . .

Note that 0.99999973 . . . is the exact same log density that

Rubinstein & Sarnak found in their famous 1994 paper for

the set of x where li(x) > π(x), on assumption of RH and LI,

though the two sets are not the same. (For technical reasons,

the density of the Mertens race and the density of the π/li race

turn out to be the same number.)

When we started investigating primitive sets we had no idea

that we would find a connection to “Chebyshev’s bias” and

“prime number races”.
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Youness Lamzouri Michael Rubinstein Peter Sarnak
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We could push the verification of Mertens primes beyond the

108th prime, but instead, we found an alternative that allows

us to push things much higher. As mentioned earlier:

Theorem (Lichtman, P, 2019). The Erdős conjecture holds

for primitive sets A supported on the odd primes up to e106
.

For details and our other results, see our papers:

J. D. Lichtman and C. Pomerance, The Erdős conjecture for

primitive sets, Proc. Amer. Math. Soc. Ser. B 6 (2019), 1–14.

J. D. Lichtman, G. Martin, and C. Pomerance, Primes in prime

number races, Proc. Amer. Math. Soc. 147 (2019),

3743–3757,
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Thank you
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