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Abstract. Rubinstein and Sarnak have shown, conditional on the Riemann
hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal
zeros of ζ(s), that the set of real numbers x ≥ 2 for which π(x) > li(x) has a
logarithmic density, which they computed to be about 2.6× 10−7. A natural
problem is to examine the actual primes in this race. We prove, assuming RH
and LI, that the logarithmic density of the set of primes p for which π(p) >
li(p) relative to the prime numbers exists and is the same as the Rubinstein–
Sarnak density. We also extend such results to a broad class of prime number
races, including the “Mertens race” between

∏
p<x(1−1/p)−1 and eγ log x and

the “Zhang race” between
∑

p≥x 1/(p log p) and 1/ log x. These latter results

resolve a question of the first and third authors from a previous paper, leading
to further progress on a 1988 conjecture of Erdős on primitive sets.

1. Introduction

In the early twentieth century it was noticed that while the prime-counting func-
tion π(x) and the logarithmic integral function li(x) =

∫ x

0
dt/ log t are satisfyingly

close together for all values of x where both had been computed, li(x) always seemed
to be slightly larger than π(x). It was a breakthrough when Littlewood [11] proved
that in fact the sign of li(x) − π(x) changes infinitely often as x → ∞. We still
do not know a specific numerical value of x for which this difference is negative,
but the smallest such value is suspected to be very large, near 1.4 × 10316 (see [2]
and subsequent refinements). We do know that π(x) < li(x) for all 2 ≤ x ≤ 1019,
thanks to calculations of Büthe [3].

Another important development concerning this “race” between π(x) and li(x)
was the paper of Rubinstein and Sarnak [15]. Assuming some standard conjectures
about the zeros of the Riemann zeta-function, namely, the Riemann hypothesis and
a linear independence hypothesis on the zeros of ζ( 12 + it), they showed that the
logarithmic density δ(Π) of the set

(1.1) Π := {x ∈ R≥1 : π(x) > li(x)}
exists and is a positive number:

(1.2) δ(Π) = Δ=̇ 2.6× 10−7.
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Here, given a set M ⊂ R≥1, the logarithmic density of M is defined as usual as

δ(M) := lim
x→∞

1

log x

∫
t∈M∩[1,x]

dt

t
,

provided the limit exists.
Since π(x) counts primes, it is natural to consider the actual primes in the race:

What can be said about the set of primes p for which π(p) > li(p)? We define the
discrete logarithmic density of a set M ⊂ R≥1 relative to the prime numbers as

δ′(M) := lim
x→∞

1

log log x

∑
p≤x
p∈M

1

p

if the limit exists. Due to the partial summation formula
∑
p≤x
p∈M

1

p
=

1

log x

∑
p≤x
p∈M

log p

p
+

∫ x

2

1

t log2 t

∑
p≤t
p∈M

log p

p
dt,

we see that if the modified limit

(1.3) δ∗(M) := lim
x→∞

1

log x

∑
p≤x
p∈M

log p

p

exists, then it is equal to δ′(M). (The converse does not hold in general, since
δ∗(M) might not exist even if δ′(M) does. For example, let Pk be the set of all
primes between 2(2k−1)! and 2(2k)!, and let P =

⋃
k≥1 Pk. Then δ′(P) = 1/2, but

δ∗(P) does not exist.) We shall find it more convenient to deal with δ∗(M) in our

proofs below. We also let δ
∗
and δ∗ denote the expression on the right-hand side

of equation (1.3) with lim replaced by lim sup and lim inf, respectively.
Our general philosophy is that the primes are reasonably randomly distributed;

in particular, there seems to be no reason for the primes to conspire to lie in the
set of real numbers Π any more or less often than expected. With the aid of an old
theorem of Selberg that most short intervals contain the “right” number of primes,
we prove that there is no such conspiracy; more precisely we prove, under the same
two assumptions as Rubinstein and Sarnak, that δ∗(Π) = Δ (see Theorem 2.2).
Moreover, we prove similar results—comparing the logarithmic density of a set of
real numbers to the relative logarithmic density of the primes lying in that set—for
a number of other prime races, some of which have not been considered before (see
Theorems 4.1 and 5.6). These results resolve some problems from [12] and so make
progress on the Erdős conjecture on primitive sets (see Section 4).

Finally we remark that our approach applies equally to prime races involving
residue classes. To do this one would replace Selberg’s theorem on the distribution
of primes in almost all short intervals with a result of Koukoulopoulos [9, Theorem
1.1] which does the same for primes in a residue class to a fixed modulus.

2. A key result

For a “naturally occurring” set M of real numbers for which δ(M) exists, it is
natural to wonder how δ∗(M) compares to δ(M). We prove the two densities are
equal in the case of sets of the form

(2.1) Ma(f) = {x : f(x) > a}
for functions f that are suitably nice.
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Theorem 2.1. Consider a function f : R≥1 → R satisfying the following two con-
ditions:

(a) For all real numbers a > b, there exists x0 = x0(a, b) such that for all
x ≥ x0, if f(x) > a, then f(z) > b for all z ∈ [x, x + x1/3], and similarly
for the function −f(x).

(b) The function f has a continuous logarithmic distribution function: for all
a ∈ R, the set Ma(f) has a well-defined logarithmic density δ(Ma(f)), and
the map a �→ δ(Ma(f)) is continuous.

Then for every real number a, the relative density δ∗(Ma(f)) exists and is equal to
δ(Ma(f)).

It is worth noting that the assumptions and conclusion of the theorem imply
that the relative density map a �→ δ∗(Ma(f)) is also continuous; in particular,
“ties have density 0”, meaning that δ∗({x : f(x) = a}) = 0. Thus there is no
difference between considering f(x) > a and considering f(x) ≥ a in the situations
we investigate.

Recall the Linear Independence hypothesis (LI), which asserts that the sequence
of numbers γn > 0 such that ζ( 12 + iγn) = 0 is linearly independent over Q.

Theorem 2.2. Let the set Π and the number Δ = δ(Π) be defined as in equa-
tions (1.1) and (1.2), respectively. Assuming RH and LI, the discrete logarithmic
density of Π relative to the primes is δ∗(Π) = Δ.

Proof of Theorem 2.2 via Theorem 2.1. Consider the normalized error function

Eπ(x) =
log x√

x
(π(x)− li(x)),

and note that Π = {x : π(x) > li(x)} = M0(Eπ). It thus suffices to show that Eπ

satisfies conditions (a) and (b) of Theorem 2.1.
Consider any number z ∈ [x, x+ x1/3]. We have π(z)− π(x) ≤ x1/3 and li(z)−

li(x) ≤ x1/3 trivially, and hence |Eπ(z) − Eπ(x)| ≤ (2 log x)/x1/6. Since the right-
hand side tends to 0, this inequality easily implies condition (a) of the theorem.

Moreover, condition (b)—namely, the fact that Eπ has a continuous limiting
logarithmic distribution—is a consequence (under RH and LI) of the work of Ru-
binstein and Sarnak: first, they establish a formula for the Fourier transform of this
limiting logarithmic distribution (see [15, equation (3.4) and the paragraph follow-
ing]). They then argue that this Fourier transform is rapidly decaying (see [7, Sec-
tion 2.3] for a more explicit version of their method). From this they conclude
that the distribution itself is continuous (and indeed much more, namely, that it
corresponds to an analytic density function; see [15, Remark 1.3]). �

The continuity of the limiting logarithmic distribution of Eπ can be deduced
from a substantially weakened version of LI: indeed, we only require the imaginary
part of one nontrivial zero of ζ(s) to not be a rational linear combination of other
such imaginary parts (see [4, Theorem 2.2(2)]).

In the next section we prove Theorem 2.1, which will complete the proof of
Theorem 2.2.
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3. Proof of Theorem 2.1

We begin with some notation. For any interval I of real numbers, let π(I)
denote the number of primes in I. For any positive real number y, define the half-
open interval I(y) := (y, y + y1/3]. Define an increasing sequence of real numbers

recursively by y1 = 1 and yk+1 = yk + y
1/3
k for k ≥ 1, and let Ik := I(yk) =

(yk, yk+1]. We have thus partitioned R>1 =
⋃∞

k=1 Ik into a disjoint union of short
half-open intervals.

Lemma 3.1. For any fixed real number α > 2
3 , we have

∑∞
k=1 y

−α
k 
 1.

Proof. For any U ≥ 1, the number of integers k such that yk ∈ [U, 2U) is at most
U2/3, since the length of each corresponding interval Ik is at least U1/3. Therefore

∞∑
k=1

y−α
k =

∞∑
j=0

∑
k : yk∈[2j ,2j+1)

y−α
k ≤

∞∑
j=0

(2j)2/3(2j)−α =
1

1− 22/3−α
,

since we assumed α > 2
3 . �

Given ε > 0, we say that an interval I(y) is ε-good if∣∣∣∣π(I(y))− y1/3

log y

∣∣∣∣ ≤ εy1/3

log y
,

and otherwise we say that I(y) is ε-bad. Selberg [16] showed that there exists a set
S ⊂ R≥1 whose natural density equals 1 for which

π(y + y1/3)− π(y) ∼ y1/3

log y
for all y ∈ S.(3.1)

This implies that for any ε > 0, the set of real numbers y for which I(y) is ε-bad
has density 0. (Selberg [16] proved (3.1) where the exponent “1/3” is permitted to
be any constant in (19/77, 1]. Selberg’s theorem has been subsequently improved:
from Huxley [8], one may take the exponent in (3.1) as any number in (1/6, 1]; see
[9, (1.3)]).

Our next lemma shows that ε-bad intervals among the Ik are also sparse.

Lemma 3.2. For each ε > 0, the union of the ε-bad intervals Ik has natural
density 0 and hence logarithmic density 0.

Proof. For every k ≥ 1, define Jk := (yk, yk+
ε
14y

1/3
k ]. Suppose that k ≥ 1 is chosen

so that Ik is an ε-bad interval. Note that for all y ∈ Jk, the intervals I(y) and
Ik = I(yk) have nearly the same number of primes; more precisely,

(3.2) π(I(y))− π(Ik) = π
(
(yk+1, y + y1/3]

)
− π

(
(yk, y]

)
,

since the primes in the larger interval (y, yk+1] cancel in the difference. By Titch-
marsh’s inequality [13, equation (1.12)], we have π(I) ≤ 2h/ log h for all intervals
I of length h > 1; and since 2h/ log h is an increasing function of h for h > e, we

deduce that for any interval I of length at most ε
13y

1/3
k ,

π(I) ≤
2 · ε

13y
1/3
k

log( ε
13y

1/3
k )

<
ε

2

y
1/3
k

log yk

when k is sufficiently large in terms of ε. (This deduction assumed that the length
of I exceeds e, but the final inequality is trivial for large k when the length of I is



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PRIMES IN PRIME NUMBER RACES 3747

at most e.) In particular, both intervals on the right-hand side of equation (3.2)

have length at most ε
13y

1/3
k when k is sufficiently large, from which we see that∣∣π(I(y))−π(Ik)

∣∣ ≤ ε
2y

1/3
k / log yk. Consequently, since Ik is ε-bad, we conclude that

∣∣∣∣π(I(y))− y1/3

log y

∣∣∣∣ ≥
∣∣∣∣π(Ik)− y

1/3
k

log yk

∣∣∣∣− ∣∣π(I(y))− π(Ik)
∣∣−

∣∣∣∣ y
1/3

log y
− y

1/3
k

log yk

∣∣∣∣
≥ εy

1/3
k

log yk
− ε

2

y
1/3
k

log yk
+ o(1) >

ε

3

y1/3

log y

when k is sufficiently large (where the mean value theorem was used in the middle
inequality). In other words, we have shown that Ik being ε-bad implies that I(y)
is ε

3 -bad for all y ∈ Jk.
Let J be the (disjoint) union of all the intervals Jk, where k ranges over those

positive integers for which Ik is ε-bad. By the result of Selberg described above,
the set of ε

3 -bad real numbers (which contains J) has density 0, so J ∩ [1, x] has
measure o(x). But this measure is at least ε

14 times the measure of the union of all
ε-bad intervals Ik; hence, the union of these intervals below x also has measure o(x),
which completes the proof. �

Proof of Theorem 2.1. For the sake of simplicity, we abbreviate Ma(f) to Ma dur-
ing this proof. Let ε and η be positive parameters, and let Bε denote the union of all
ε-bad intervals of the form Ik, so that Bε has logarithmic density 0 by Lemma 3.2.

Suppose that I(y) is any ε-good interval. Since
∫
I(y)

dt/t =
∫ y+y1/3

y
dt/t =

log(1 + y−2/3) = y−2/3 +O(y−4/3), we see that

(3.3)
∑

p∈I(y)

log p

p
≤ log y

y
π(I(y)) ≤ (1 + ε)y−2/3 = (1 + ε)

∫
I(y)

dt

t
+O(y−4/3),

where the second inequality used the ε-goodness of I(y). On the other hand, even
if I(y) is an ε-bad interval, Titchmarsh’s inequality still yields

(3.4)
∑

p∈I(y)

log p

p
≤ log y

y
π(I(y)) 
 log y

y

y1/3

log(y1/3)

 y−2/3 


∫
I(y)

dt

t
.

By condition (a) of Theorem 2.1, there exists a positive integer C (depending on
a and η) such that if p is a prime in an interval Ik with k > C, then the inequality
f(p) > a implies that f(z) > a−η for all z ∈ Ik. In particular, every Ik containing a
prime p with f(p) > a is either a subset of Bε or else is an ε-good interval contained
in Ma−η, so that

∑
p≤x

f(p)>a

log p

p
≤

∑
Ik⊂Ma−η∩[1,x]

Ik is ε-good

∑
p∈Ik

log p

p
+

∑
Ik⊂Bε∩[1,x]

∑
p∈Ik

log p

p
.
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Using equation (3.3) for the terms in the first sum and equation (3.4) for the second
sum, we obtain the upper bound

∑
p≤x

f(p)>a

log p

p
≤ (1 + ε)

∫
Ma−η∩[1,x]

dt

t
+O

( ∑
yk≤x

y
−4/3
k

)
+O

(∫
Bε∩[1,x]

dt

t

)

≤ (1 + ε)

∫
Ma−η∩[1,x]

dt

t
+O(1) + o(log x)

by Lemma 3.1 and the fact that Bε has logarithmic density 0.
Therefore we have

δ
∗
(Ma) = lim sup

x→∞

1

log x

∑
p≤x

f(p)>a

log p

p
(3.5)

≤ lim sup
x→∞

(
(1 + ε)

log x

∫
Ma−η∩[1,x]

dt

t
+ o(1)

)
= (1 + ε)δ(Ma−η)(3.6)

since δ(Ma−η) exists by condition (b) of Theorem 2.1.
Similarly, the primes in Ma that are contained in ε-good intervals Ik ⊂ Ma form

a subset of all primes in Ma. Then for a lower bound, it suffices to consider the
ε-good intervals in Ma, which by a simple computation gives the bound δ∗(Ma) ≥
(1− ε)δ(Ma).

Since these bounds hold for all ε > 0, we see that

δ(Ma) ≤ δ∗(Ma) ≤ δ
∗
(Ma) ≤ δ(Ma−η).(3.7)

Finally, by condition (b) the map η �→ δ(Ma−η) is continuous, so since η > 0 was

arbitrary we conclude that δ∗(Ma) = δ
∗
(Ma) = δ(Ma) as desired. �

4. The Mertens race

In 1874, Mertens proved three remarkable and related results on the distribution
of prime numbers. His third theorem asserts that

∏
p<x

(
1− 1

p

)−1

∼ eγ log x as x → ∞,

where γ is the Euler–Mascheroni constant. The “Mertens race” between eγ log x
and this product of Mertens is mathematically analogous to the race between li(x)
and π(x). Recent analysis of Lamzouri [10] implies, conditionally on RH and LI,
that the normalized error function

EM (x) =

(
log

∏
p<x

(
1− 1

p

)−1

− log log x− γ

)√
x log x

possesses the exact same limiting distribution as that of

−Eπ(x) =
log x√

x

(
li(x)− π(x)

)

which appeared in the proof of Theorem 2.2. We say a prime p is Mertens if
EM (p) > 0. It can be checked that the first 108 odd primes are Mertens. The first
and third authors have shown [12, Theorem 1.3], assuming RH and LI, that the
lower relative logarithmic density of the Mertens primes exceeds .995. Applying
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Theorem 2.1 to the Mertens race by choosing f(x) = EM (x) leads immediately to
the following improvement.

Theorem 4.1. Assuming RH and LI, the Mertens primes have relative logarithmic
density 1−Δ, where Δ was defined in equation (1.2).

Proof. Consider any number z ∈ [x, x + x1/3]. We have log log z − log log x 

1/(x log x) by the mean value theorem and

∑
x≤p<z

log
(
1− 1

p

)−1



∑

x≤p<z

1

p
≤

∑
x≤n<x+x1/3

1

n
< x−2/3,

and so |EM (z)− EM (x)| 
 (log x)/x1/6. The fact that this upper bound tends to
0 easily implies condition (a) of Theorem 2.1. Finally, condition (b) is satisfied by
a similar argument as in the proof of Theorem 2.2, using work of Lamzouri [10] on
the limiting logarithmic distribution of EM (x). �

Theorem 4.1 has an interesting application to the Erdős conjecture for primitive
sets. A subset of the integers larger than 1 is primitive if no member divides
another. Erdős [5] proved in 1935 that the sum of 1/(a log a) for a running over a
primitive set A is universally bounded over all choices for A. Some years later in
a 1988 seminar in Limoges, he asked if this universal bound is attained for the set
of prime numbers. If we define f(a) = 1/(a log a) and f(A) =

∑
a∈A f(a), and let

P(A) denote the set of primes that divide some member of A, then this conjecture
is seen to be equivalent to the following assertion.

Conjecture 4.2 (Erdős). For any primitive set A, we have f(A) ≤ f(P(A)).

The Erdős conjecture remains open, but progress has been made in certain cases.
Say a prime p is Erdős-strong if f(A) ≤ f(p) for any primitive set A such that each
member of A has p as its least prime factor. By partitioning the elements of A into
sets A′

p by their smallest prime factor p, it is clear that the Erdős conjecture would
follow if every prime p is Erdős-strong. The first and third authors [12, Corollary
3.0.1] proved that every Mertens prime is Erdős-strong. In particular, the Erdős
conjecture holds for any primitive set A such that, for all a ∈ A, the smallest prime
factor of a is Mertens.

In [12] it was conjectured that all primes are Erdős-strong. Since 2 is not a
Mertens prime, it would be great progress just to be able to prove that 2 is Erdős-
strong. Nevertheless, Theorem 4.1 implies the following corollary.

Corollary 4.3. Assuming RH and LI, the lower relative logarithmic density of the
Erdős-strong primes is at least 1−Δ. In particular, the Erdős conjecture holds for
all primitive sets whose elements have smallest prime factors in a set of primes of
lower relative logarithmic density at least 1−Δ ≈ 0.99999974.

5. The Zhang race

By the prime number theorem, one has the asymptotic relation

∑
p≥x

1

p log p
∼ 1

log x
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as x → ∞, and by inspection one further has∑
p≥x

1

p log p
≤ 1

log x
(5.1)

for a large range of x. Beyond its aesthetic appeal, this inequality arises quite
naturally in the study of primitive sets. Indeed, Z. Zhang [17] used a weakened
version of (5.1) to prove Conjecture 4.2 for all primitive sets whose elements have
at most 4 prime factors, which represented the first significant progress in the
literature after [5].

Call a prime q Zhang if the inequality (5.1) holds for x = q. From computations
in [12], the first 108 primes are all Zhang except for q = 2, 3. Following some
ideas of earlier work of Erdős and Zhang [6], the first and third authors have
shown [12, Theorem 5.1] that Conjecture 4.2 holds for any primitive set A such
that every member of P(A) is Zhang.

We wish to find the density of N , the set of real numbers for which the Zhang
inequality (5.1) holds. Note that x ∈ N if and only if the normalized error

EZ(x) :=

(
1

log x
−

∑
p≥x

1

p log p

)√
x log2 x(5.2)

is nonnegative. To show the density of N exists we follow the general plan laid out
by Lamzouri [10], who proved analogous results for the Mertens race, with some
important modifications.

5.1. Explicit formula for EZ(x). We relate the sum over primes,
∑

p≥x1/(p log p),

to the corresponding series over prime powers,
∑

n≥x Λ(n)/(n log2 n), in the follow-
ing lemma.

Lemma 5.1. For all x > 1,

EZ(x) =

(
1

log x
−

∑
n≥x

Λ(n)

n log2 n

)√
x log2 x+ 1 + O

( 1

log x

)
.

Proof. Our first step is to convert the sum over primes to prime powers, via∑
p≥x

1

p log p
=

∑
n≥x

Λ(n)

n log2 n
−

∑
pk>x
k≥2

1

k2pk log p
.(5.3)

The prime number theorem gives that π(y) = y/ log y + O(y/ log2 y), so for any
y ≥ 2,∑

p≥y

1

p2 log p
= − π(y)

y2 log y
+

∫ ∞

y

2 log t+ 1

t3 log2 t
π(t) dt

= − 1

y log2 y
+O

(
1

y log3 y

)
+

∫ ∞

y

2 log t+ 1

t2 log3 t

(
1 +O

(
1

log t

))
dt

= − 1

y log2 y
+

2

y log2 y
+ O

(
1

y log3 y

)
=

1

y log2 y
+O

(
1

y log3 y

)
.

In particular, taking y =
√
x,

∑
p2>x

1

4p2 log p
=

1
√
x log2 x

+O

(
1

√
x log3 x

)
.(5.4)
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For the larger powers of primes, we have

∑
pk>x

1

pk log p
<

∑
n>x1/k

1

nk
<

1

�x1/k�k +

∫ ∞

x1/k

dt

tk
≤ 1

x
+

1

(k − 1)x1−1/k

 x−2/3

uniformly for k ≥ 3, and thus

∑
k≥3

∑
pk>x

1

k2pk log p



∑
k≥3

x−2/3

k2

 x−2/3.(5.5)

Inserting the estimates (5.4) and (5.5) into equation (5.3) then yields

∑
p≥x

1

p log p
=

∑
n≥x

Λ(n)

n log2 n
− 1

√
x log2 x

+O

(
1

√
x log3 x

)
,

which implies the statement of the lemma. �

By integrating twice, we relate our series
∑

Λ(n)/n log2 n to the series
∑

Λ(n)/na

= −ζ ′/ζ(a), which is more amenable to contour integration. This leads to the fol-
lowing explicit formula for EZ(x) over the zeros of ζ(s), analogous to [10, Proposi-
tion 2.1].

Proposition 5.2. Unconditionally, for any real numbers x, T ≥ 5,

EZ(x) = 1−
∑

| Im(ρ)|<T

xρ−1/2

ρ− 1

+O

(
1

log x
+

√
x

T
log2(xT ) +

1

log x

∑
| Im(ρ)|<T

xRe(ρ)−1/2

Im(ρ)2

)
,

where ρ runs over the nontrivial zeros of ζ(s).

Proof. Our starting point is a tool from Lamzouri, namely [10, Lemma 2.4]: for
any real numbers a > 1 and x, T ≥ 5,

∑
n<x

Λ(n)

na
= −ζ ′

ζ
(a) +

x1−a

1− a
−

∑
| Im(ρ)|<T

xρ−a

ρ− a

+O

(
x−a log x+

x1−a

T

(
4a + log2 x+

log2 T

log x

)
+

1

T

∑
n

Λ(n)

na+1/ log x

)
.

Then integration with respect to a gives for any b > 1,

∑
n<x

Λ(n)

nb log n
=

∫ ∞

b

∑
n<x

Λ(n)

na
da

= log ζ(b) +

∫ ∞

b

x1−a

1− a
da−

∑
| Im(ρ)|<T

∫ ∞

b

xρ−a

ρ− a
da+ E1,

where

E1 
 x−b +
x1−b

T

( 4b

log x
+ log x+

log2 T

log2 x

)
+

1

T

∑
n

Λ(n)

nb+1/ log x log n
.
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Integrating once again with respect to b, we have

∑
n<x

Λ(n)

n log2 n
=

∫ ∞

1

∑
n<x

Λ(n)

nb log n
db

=

∫ ∞

1

log ζ(b) db+

∫ ∞

1

∫ ∞

b

x1−a

1− a
da db

−
∑

| Im(ρ)|<T

∫ ∞

1

∫ ∞

b

xρ−a

ρ− a
da db+ E2,

(5.6)

where

E2 
 1

x log x
+

1

T

( 4

log2 x
+ 1 +

log2 T

log3 x

)
+

1

T

∑
n

Λ(n)

n1+1/ log x log2 n


 1

x log x
+

1

T

(
1 +

log2 T

log3 x

)
+

1

T

∑
n

Λ(n)

n log2 n

 1

x log x
+

1

T

(
1 +

log2 T

log3 x

)
,

since
∑

n Λ(n)/(n log2 n) 
 1.
The first term on the right-hand side of equation (5.6) can be written as∫ ∞

1

log ζ(b) db =

∫ ∞

1

∑
n

Λ(n)

nb log n
db =

∑
n

Λ(n)

n log2 n
,(5.7)

where the Fubini–Tonelli theorem justifies the interchange of summation and inte-
gration since all terms are nonnegative. The second term on the right-hand side of
equation (5.6) evaluates to

∫ ∞

1

∫ ∞

b

x1−a

1− a
da db =

∫ ∞

1

x1−a

1− a

(∫ a

1

db

)
da

= −
∫ ∞

1

x1−a da =
x1−a

log x

∣∣∣∣
∞

1

= − 1

log x
,(5.8)

where the interchange of integrals is again justified by the Fubini–Tonelli theorem.
The double integral inside the series on the right-hand side of equation (5.6) is

evaluated using a similar calculation:

−
∫ ∞

1

∫ ∞

b

xρ−a

ρ− a
da db = −

∫ ∞

1

a− 1

ρ− a
xρ−a da

=

∫ ∞

1

xρ−a da− (ρ− 1)

∫ ∞

1

xρ−a

ρ− a
da.

The first integral comes out to xρ−1/ log x, while for the second, integrating by
parts twice gives

(ρ− 1)

∫ ∞

1

xρ−a

ρ− a
da =

xρ−1

log x
+

xρ−1

(ρ− 1) log2 x
+

2(ρ− 1)

log2 x

∫ ∞

1

xρ−a

(ρ− a)3
da.

Letting u = (a− 1) log x, we have a = 1 + u/ log x so the latter integral becomes

2(ρ− 1)

log2 x

∫ ∞

1

xρ−a

(ρ− a)3
da =

2(ρ− 1)xρ−1

log3 x

∫ ∞

0

e−u

(ρ− 1− u/ log x)3
du.
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Note that |ρ− 1− u/ log x| ≥ | Im(ρ)| for all u ∈ R, so we deduce that
∣∣∣∣2(ρ− 1)

log2 x

∫ ∞

1

xρ−a

(ρ− a)3
da

∣∣∣∣ 
 xRe(ρ)−1

Im(ρ)2 log3 x
.

Thus we have

−
∫ ∞

1

∫ ∞

b

xρ−a

ρ− a
da db =

xρ−1

log x
−
(
xρ−1

log x
+

xρ−1

(ρ− 1) log2 x
+O

(
xRe(ρ)−1

Im(ρ)2 log3 x

))

= − xρ−1

(ρ− 1) log2 x
+O

(
xRe(ρ)−1

Im(ρ)2 log3 x

)
.(5.9)

The calculations (5.7), (5.8), and (5.9) transform equation (5.6) into

∑
n<x

Λ(n)

n log2 n
=

∑
n

Λ(n)

n log2 n
− 1

log x
− 1

log2 x

∑
| Im(ρ)|<T

xρ−1

ρ− 1

+O

(
1

x log x
+

1

T

(
1 +

log2 T

log3 x

)
+

1

log3 x

∑
| Im(ρ)|<T

xRe(ρ)−1

Im(ρ)2

)
,

and thus

1

log x
−

∑
n≥x

Λ(n)

n log2 n
= − 1

log2 x

∑
| Im(ρ)|<T

xρ−1

ρ− 1

+O

(
1

x log x
+

1 + log2 T/ log3 x

T
+

1

log3 x

∑
| Im(ρ)|<T

xRe(ρ)−1

Im(ρ)2

)
.

The proposition now follows upon comparing this formula to Lemma 5.1. �

If we assume the Riemann hypothesis we obtain the following corollary, analogous
to [10, Corollary 2.2].

Corollary 5.3. Assume RH, and let 1
2 + iγ run over the nontrivial zeros of ζ(s)

with γ > 0. Then, for any real numbers x, T ≥ 5 we have

EZ(x) = 1− 2Re
∑

0<γ<T

xiγ

−1/2 + iγ
+O

(
1

log x
+

√
x

T
log2(xT )

)
.(5.10)

Proof. By the Riemann–von Mangoldt formula,∣∣∣∣
∑
|γ|<T

xiγ

γ2

∣∣∣∣ ≤
∑
|γ|<T

1

γ2

 1,

so the corollary now follows from Proposition 5.2. �

5.2. Density results. Since the explicit formula for the Zhang primes in Corollary
5.3 is exactly the same as that of the Mertens primes given by Lamzouri (upon
noting a typo in [10, Corollary 2.2], namely, that “EM (x) = 1 + · · · ” should read
“EM (x) = 1− · · · ”), the analysis therein leads to the following results. Recall that
N is the set of real numbers for which the Zhang inequality (5.1) holds and that
EZ(x) is defined in equation (5.2).
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Theorem 5.4. Assume RH. Then

0 < δ(N ) ≤ δ(N ) < 1.

Moreover, EZ(x) possesses a limiting distribution μN ; that is,

lim
x→∞

1

log x

∫ x

2

f(EZ(t)) dt =

∫
R

f(t) dμN (t)

for all bounded continuous functions f on R.

Proposition 5.5. Assume RH and LI. Let X(γ) be a sequence of independent
random variables, indexed by the positive imaginary parts of the nontrivial zeros
of ζ(s), each of which is uniformly distributed on the unit circle. Then μN is the
distribution of the random variable

Y = 1− 2Re
∑
γ>0

X(γ)√
1/4 + γ2

.(5.11)

Theorem 5.6. Assume RH and LI. Then δ(N ) exists and equals 1−Δ. Hence by
Theorem 2.1, the relative logarithmic density of the Zhang primes is 1−Δ.

These results are completely analogous to Theorems 1.1 and 1.3 and Propositions
4.1 and 4.2 from [10].

Before moving on, we note a further consequence of the fact that EM (x) and
EZ(x) possess the same explicit formula, namely, that the symmetric difference of
Mertens primes and Zhang primes has relative logarithmic density 0.

Corollary 5.7. Assume RH and LI. Then we have δ(S) = δ∗(S) = 0 for the
symmetric difference S = S1 ∪ S2, where

S1 = {x : EM (x) > 0 ≥ EZ(x)} and S2 = {x : EZ(x) > 0 ≥ EM (x)}.

Proof. Take η > 0. Combining [10, Corollary 2.2] with Corollary 5.3 and letting T
tend to infinity, we find that

∣∣EM (x)− EZ(x)
∣∣ = O

( 1

log x

)
.(5.12)

Let c be the implied constant in equation (5.12). Thus for all x ≥ ec/η, if EM (x) > 0,
then EZ(x) > −η. This means that

δ∗(S1) ≤ δ∗({x : EZ(x) > 0})− δ∗({x : EZ(x) > −η})
= δ({x : EZ(x) > 0})− δ({x : EZ(x) > −η}),

which tends to 0 as η → 0 by continuity, using Theorems 2.1 and 5.4. Since this
holds for all η > 0, we conclude that δ∗(S1) = 0. Interchanging the roles of EM

and EZ proves δ∗(S2) = 0, and thus δ∗(S) = δ∗(S1 ∪ S2) = 0. A similar argument
(simpler even, without the appeal to Theorem 2.1) shows that δ(S) = 0. �

We also remark, however, that the analogous argument does not work for Eπ.
This is because the relevant series over nontrivial zeros is

∑
ρ x

ρ−1/(ρ − 1) for

EM and EZ , while for Eπ it is
∑

ρ x
ρ/ρ. Assuming RH, this amounts to the

observation that the two series
∑

γ x
iγ/(−1/2+ iγ) and

∑
γ x

iγ/(1/2+ iγ) are not
readily comparable for a given x, even though, by symmetry, both do possess the
same limiting distribution, which explains the appearance of δ(Π) = Δ in results
on the Mertens and Zhang races.
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The analogous problem of determining the density of the symmetric difference
between the Mertens/Zhang primes and the li-beats-π primes is an interesting prob-
lem for further investigation; it would presumably proceed by examining the two-
dimensional limiting distribution of the ordered pair of normalized error terms and
understanding how the correlations of the two functions’ summands impact the
two-dimensional limiting distribution.

6. Other series over prime numbers

Before concluding our analysis, we remark that similar considerations apply more
generally to series of the form

∑
p p

α(log p)k+1, where k ∈ Z and α ∈ R. The basic
approach is to first relate the sum of interest to the corresponding sum over prime
powers via

∑
p

log p

pα
(log p)k =

∑
n

Λ(n)

nα
(log n)k −

∑
pm,m≥2

mk(log p)k+1

pmα
.

The next step is to employ an exact formula relating the sum over prime powers to
series over zeros of ζ(s). For example, von Mangoldt’s exact formula states that

∑
n≤x

Λ(n) = x− ζ ′

ζ
(0)−

∑
ρ

xρ

ρ
+

∑
m≥1

x−2m

−2m
(6.1)

provided x is not a prime power. The above formula naturally generalizes to any
real exponent α. Namely, one may prove by Perron’s formula (cf. [10, Lemma 2.4])
that

∑
n≤x

Λ(n)

nα
=

x1−α

1− α
− ζ ′

ζ
(α)−

∑
ρ

xρ−α

ρ− α
+

∑
m≥1

x−2m−α

−2m− α
(6.2)

provided x is not a prime power and α is neither 1 nor a negative even integer.
Note that when α > 1, we have −(ζ ′/ζ)(α) =

∑
n Λ(n)/n

α so we may simplify the
above as

∑
n≥x

Λ(n)

nα
= − x1−α

1− α
+
∑
ρ

xρ−α

ρ− α
−

∑
m≥1

x−2m−α

−2m− α
.(6.3)

To gain factors of log n in the numerator, we differentiate with respect to α. Specif-
ically, since d/dα[xc−α/(c− α)] = (− log x+ 1/(c− α))xc−α/(c− α) for any c ∈ C,
by induction one may show that

dk

dαk

[ xc−α

c− α

]
= (− log x)k

(
xc−α

c− α
+Ok

( 1

log x

))
.

This implies, for all k ≥ 1, that

∑
n≥x

Λ(n)

nα
(logn)k

= (log x)k
(
− x1−α

1− α
+
∑
ρ

xρ−α

ρ− α
−

∑
m≥1

x−2m−α

−2m− α

)(
1 +Ok

( 1

log x

))
.
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Similarly for integration, we have∫ ∞

α

xc−β

c− β
dβ = li(xc−α) = (1 +O(1/ log x))

xc−β

c− β
,

so an induction argument will establish the exact formula for negative integers k.
From here, all that remains is to analyze the sum over nontrivial zeta zeros.

Assuming RH, it suffices to consider the series
∑

γ x
iγ/(1/2− α+ iγ). Further as-

suming LI, this series has a limiting distribution, which may be computed explicitly
(as in [1, 15]).
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Note added in proof

Following the proof of Proposition 5.2, one may establish the more precise explicit
formula

EZ(x) = 1−
∑

| Im(ρ)|<T

∫ ∞

1

a− 1

ρ− a
xρ−a da+O

( 1

log x
+

√
x

T
log2(xT )

)
.

Indeed, starting from (5.6) in the proof of Proposition 5.2, we apply (5.7), (5.8),
and the first part of the next display. Similarly, following the proof of Lamzouri’s
Proposition 2.1, the same formula can be shown to hold for EM (x). Together these
two formulas show that |EZ(x)−EM (x)| 
 1/ log x when T is suitably large, thus
establishing Corollary 5.7 unconditionally, without assuming RH or LI.
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