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Abstract. We show that there are sets of integers with asymptotic
density arbitrarily close to 1 in which there is no solution to the equation
ab = c, with a, b, c in the set. We also consider some natural general-
izations, as well as a specific numerical example of a product-free set of
integers with asymptotic density greater than 1/2.

1. Introduction

We say a set of integers S is product-free if whenever a, b, c ∈ S we have

ab 6= c. Similarly, if S ⊂ Z/nZ, we say S is product-free if ab 6≡ c (mod n),

whenever a, b, c ∈ S. Clearly, if S is a product-free subset of Z/nZ, then

the set of integers congruent modulo n to some member of S is a product-

free set of integers. For a positive integer n, let D(n) denote the maximum

value of |S|/n where S runs over all product-free subsets of Z/nZ. (Here

|S| denotes the cardinality of a set S.)

In a recent paper, the third author and Schinzel [9] obtained an upper

bound on D(n) valid for a large set of n. They showed that D(n) < 1/2

whenever n is not divisible by a square with at least 6 distinct prime factors.

Further, those numbers which are divisible by a square with at least 6

distinct prime factors form a set of asymptotic density about 1.56 × 10−8.

Originally they suspected that D(n) < 1/2 might hold for all n.

In this paper we show that for each real number ε > 0 there is some

number n with D(n) > 1 − ε. Thus, there are product-free sets of integers

with asymptotic density arbitrarily close to 1. Stated this way, the result

is best possible, since no product-free set can have density 1. Indeed, if S
is a product free set of positive integers and a is the least member of S,

then it is easy to see that the upper density of S is at most 1− 1/(2a); see

Remark 2.7.

A consequence of our main result is that the set of integers n having

D(n) > 1 − ε has a positive lower density. This follows using the property

that D(mn) ≥ D(n) for all positive integers m,n. If D(n0) > 1 − ε, then
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it shows that D(n) > 1 − ε holds for every multiple of n0, and so it holds

for a set of positive integers n of positive lower density. Furthermore the

set N (u) = {n ≥ 1 : D(n) > u} has a well-defined logarithmic density δ(u)

which is positive for 0 ≤ u < 1. In Theorem 2.1 we obtain a quantitative

rate at which D(n) approaches 1, which yields a lower bound for δ(u) as

u→ 1−, given as (5.1) in Sec. 5.

We also compute a numerical example of a number n with D(n) > 1/2

and we consider some generalizations of the equation ab = c.

It is interesting to note that while there are product-free subsets with

density arbitrarily close to 1, the density of sum-free subsets of finite abelian

groups (written additively) is easily seen to be bounded by 1/2 (see [4] for

a complete characterization of the maximum density of sum-free subsets of

various types of finite abelian groups).

2. The main theorem

In this section we show that there can be product-free sets of integers of

density arbitrarily close to one, but not equal to one. Our main result is as

follows.

Theorem 2.1. There is a positive constant C and infinitely many integers

n with

D(n) > 1− C

(log log n)1− 1
2

e log 2
.

Here the exponent 1− 1
2
e log 2 ≈ 0.057915.

Corollary 2.2. For each real number ε > 0 there is a positive integer n

with D(n) > 1− ε.

We first sketch the idea of the proof. Let Ω(m) denote the number of

prime factors of m counted with multiplicity. Clearly for any fixed z, the set

of numbers m with z < Ω(m) < 2z is product-free. Further, after Hardy and

Ramanujan, we know that Ω(m) for numbers m ≤ x is usually concentrated

near log log x. So if z ≈ 2
3

log log x (actually e
4

works out a little better than
2
3
), we have a product-free set that has the great preponderance of integers

in [1, x]. With an extra device (see Lemma 2.3) for creating such a set that

is periodic modulo some particular large number n, we obtain the result.

The idea used bears some resemblance to that of Remark 2 and its proof in

Hajdu, Schinzel, and Skalba [5].

Before giving the proof, we establish some preliminary lemmas. Let ϕ

denote Euler’s function and let rad(n) denote the largest squarefree divisor

of the positive integer n.
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Lemma 2.3. Suppose that n is a positive integer and D is a product-free

set of divisors of n/rad(n). Then

SD := {s ∈ Z/nZ : gcd(s, n) ∈ D}

is product-free and

|SD| = ϕ(n)
∑
d∈D

1

d
.

Proof. Suppose s1, s2 ∈ SD with gcd(si, n) = di ∈ D for i = 1, 2. We have

gcd(s1s2, n) = gcd(d1d2, n) = d3, say. If d3 - n/rad(n), then by hypothesis

d3 6∈ D, so s1s2 6∈ SD. On the other hand, if d3 | n/rad(n), then d3 = d1d2,

so again by hypothesis, d3 6∈ D and s1s2 6∈ SD. Thus, SD is product-free and

it remains to compute its cardinality. For d ∈ D, we have

{s ∈ Z/nZ : gcd(s, n) = d} = {jd : j ∈ Z/(n/d)Z, gcd(j, n/d) = 1}.

Thus, |SD| =
∑

d∈D ϕ(n/d). But, by hypothesis, we have rad(n/d) = rad(n)

for d ∈ D, so that ϕ(n/d) = ϕ(n)/d. This completes the proof. �

For an integer n > 1, let P (n) denote the largest prime factor of n and

let P (1) = 1. As above, we let Ω(n) denote the number of prime factors of n,

counted with multiplicity. We use the notation f(x) � g(x) to mean there

are positive constants c1, c2 such that c1g(x) ≤ f(x) ≤ c2(x) in some stated

domain for the variable x. Lemma 2.4 and Corollary 2.5 below are standard

results, cf. Exercises 04 and 05 in [6]; we give the details for completeness.

Lemma 2.4. Uniformly for real numbers x, z with x ≥ 2 and 0 < z < 2,∑
P (n)≤x

zΩ(n)

n
� 1

2− z
(log x)z.

Proof. We have

∑
P (n)≤x

zΩ(n)

n
=
∏
p≤x

(
1 +

z

p
+
z2

p2
+ · · ·

)
=
∏
p≤x

(
1− z

p

)−1

=
∏
p≤x

(
1− 1

p

)−z∏
p≤x

(
1− 1

p

)z (
1− z

p

)−1

.

By the theorem of Mertens we have
∏

p≤x(1−1/p)−z ∼ eγz(log x)z uniformly

for z in the interval (0, 2), as x → ∞, where γ is the Euler–Mascheroni

constant. Thus, it suffices to prove that the second product above is of
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magnitude 1/(2− z). Using the power series for log(1− t), we have

log

(∏
p≤x

(
1− 1

p

)z (
1− z

p

)−1
)

=
∑
p≤x

(
z log

(
1− 1

p

)
− log

(
1− z

p

))

= z log
1

2
− log

(
1− z

2

)
+O

( ∑
3≤p≤x

1

p2

)
= − log(2− z) +O(1).

This then completes the proof of the lemma. �

We will use the entropy-like function Q(x) defined for x > 0 by

Q(x) = x log x− x+ 1.

Note that Q(x) ≥ 0 for all x > 0 with equality only at x = 1.

Corollary 2.5. Uniformly for real numbers α, β, x with 0 < α ≤ 1 ≤ β < 2

and x ≥ 3, we have∑
P (n)≤x

Ω(n)≤α log log x

1

n
� (log x)1−Q(α),

∑
P (n)≤x

Ω(n)≥β log log x

1

n
� 1

2− β
(log x)1−Q(β).

Proof. We have∑
P (n)≤x

Ω(n)≤α log log x

1

n
≤
∑

P (n)≤x

αΩ(n)−α log log x

n

=
∑

P (n)≤x

αΩ(n)

n
(log x)−α logα � (log x)α−α logα,

using 0 < α ≤ 1 and Lemma 2.4 with z = α. Similarly, Lemma 2.4 with

z = β gives∑
P (n)≤x

Ω(n)≥β log log x

1

n
≤
∑

P (n)≤x

βΩ(n)−β log log x

n
� 1

2− β
(log x)β−β log β.

This completes the proof of the corollary. �

Proof of Theorem 2.1. Let x be a large real number, let `x denote the least

common multiple of the integers in [1, x], and let nx = `2
x. Thus, by the

prime number theorem, we have nx = e(2+o(1))x as x→∞, so that

(2.1) log log nx = log x+O(1).

Let

Dx =
{
d | `x :

e

4
log log x < Ω(d) <

e

2
log log x

}
.
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We note that each d ∈ Dx divides nx/rad(nx) and that Dx is product-free.

Thus, by Lemma 2.3 we find that

SDx := {a ∈ Z/nxZ : gcd(a, nx) ∈ Dx}

is a product-free subset of Z/nxZ, with densityD(S) = ϕ(nx)
nx

∑
d∈Dx

1
d
. Using

(2.1) it suffices to show that for some positive constant c and x sufficiently

large,

(2.2)
ϕ(nx)

nx

∑
d∈Dx

1

d
≥ 1− c

(log x)1− 1
2

e log 2
.

We have ∑
d∈Dx

1

d
≥
∑
d|`x

1

d
−

∑
P (d)≤x

Ω(d)≤ e
4

log log x

1

d
−

∑
P (d)≤x

Ω(d)≥ e
2

log log x

1

d
.

Since 1 − Q( e
4
) = 1 − Q( e

2
) = 1

2
e log 2, Corollary 2.5 implies there is some

absolute constant c′ > 0 with∑
d∈Dx

1

d
≥
∑
d|`x

1

d
− c′(log x)

1
2

e log 2.

Now, letting σ denote the sum-of-divisors function,∑
d|`x

1

d
=
σ(`x)

`x
=
∏
pa‖`x

pa+1 − 1

pa(p− 1)
=
∏
p≤x

p

p− 1

∏
pa‖`x

(
1− 1

pa+1

)

≥
∏
p≤x

p

p− 1
·
(

1− 1

x

)π(x)

≥
∏
p≤x

p

p− 1
·
(

1− π(x)

x

)
,

where π(x) denotes the prime-counting function. Thus, since ϕ(nx)/nx =∏
p≤x(p− 1)/p,

ϕ(nx)

nx

∑
d∈Dx

1

d
≥ 1− π(x)

x
− c′(log x)

1
2

e log 2
∏
p≤x

p− 1

p
.

Using the theorem of Mertens for the product and the Chebyshev estimate

π(x)� x/ log x, we obtain (2.2), completing the proof of Theorem 2.1. �

Remark 2.6. It is possible to uniformly save a factor
√

log log x in Corol-

lary 2.5 under the strengthened hypothesis that α ∈ [ε, 1 − ε] and β ∈
[1+ε, 2−ε], where ε > 0 is fixed but arbitrary. This gives a slightly stronger

version of Theorem 2.1: There is a positive constant C such that

(2.3) D(n) > 1− C

(log log n)1− 1
2

e log 2
√

log log log n
for infinitely many n.

The details are presented in a sequel paper [7], where the principal result is

that (2.3), apart from the constant C, is best possible.
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Remark 2.7. For a set S of positive integers, let S(x) = S ∩ [1, x]. If

S is product-free with least member a, then its upper asymptotic density,

defined as

d(S) := lim sup
x→∞

1

x
|S(x)|,

satisfies d(S) ≤ 1 − 1
2a

. To see this, suppose x ≥ a is arbitrary. Since

S(x) \ S(x/a) lies in (x/a, x], we have |S(x)| − |S(x/a)| ≤ x− bx/ac. Also,

multiplying each member of S(x/a) by a creates products in [1, x] which

cannot lie in S, so we have |S(x)| ≤ x−|S(x/a)|. Adding these two inequal-

ities leads to |S(x)| ≤ x− 1
2
bx/ac, which proves the assertion.

3. Generalizations

If k, j are positive integers, we say a set of integers (or residue classes in

Z/nZ) is (k, j)-product-free if there is no solution to a1a2 . . . ak = b1b2 . . . bj

with all k + j letters being elements of the set. If k = j then only the

empty set is (k, j)-product-free. Indeed, if a is an element of the set, the

equation ak = ak shows that we cannot avoid a1a2 . . . ak = b1b2 . . . bj. Thus

we restrict to cases where k 6= j, and we may as well assume that k > j.

The case of k = 2, j = 1 is exactly the definition of product-free that was

considered in the last section. In this section we record the following simple

generalization.

Theorem 3.1. For each real number ε > 0 and integer m ≥ 3 there is a

positive integer n and a subset S of Z/nZ of cardinality at least (1 − ε)n

that is simultaneously (k, j)-product-free for all positive integers k > j with

k + j ≤ m.

Proof. As in the proof of Theorem 2.1, let `x denote the least common

multiple of the integers in [1, x], but now we set nx = `mx , and

Dx =

{
d | `x :

(
1− 1

m

)
log log x < Ω(d) <

(
1 +

1

m

)
log log x

}
.

Let k > j be positive integers with k + j ≤ m. If d1, . . . , dk ∈ Dx and

also d′1, . . . , d
′
j ∈ Dx, it is easy to see that d = d1 . . . dk and d′ = d′1 . . . d

′
j

are divisors of nx. In addition, d 6= d′, since Ω(d) > k(1 − 1
m

) log log x ≥
j(1 + 1

m
) log log x > Ω(d′). Thus, Dx is (k, j)-product-free as is the set SDx

(cf. Lemma 2.3). As in the proof of Theorem 2.1 it suffices to show that for

each ε > 0,

ϕ(nx)

nx

∑
d∈Dx

1

d
≥ 1− ε
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for all sufficiently large x depending on ε. Already from the proof of Theo-

rem 2.1, we have
ϕ(nx)

nx

∑
d|`x

1

d
≥ 1− π(x)

x
∼ 1

as x→∞. Since ϕ(nx)/nx ∼ 1/(eγ log x) as x→∞, it suffices to show that

(3.1)
∑
d|`x
d 6∈Dx

1

d
= o(log x) as x→∞.

Letting δ1 = Q(1 − 1/m) and δ2 = Q(1 + 1/m), we have δ1, δ2 > 0. Using

Corollary 2.5,∑
d|`x

Ω(d)≤(1− 1
m) log log x

1

d
≤ (log x)1−δ1/2,

∑
d|`x

Ω(d)≥(1+ 1
m) log log x

1

d
≤ (log x)1−δ2/2

for all large x. Thus, we have (3.1), which completes the proof of the theo-

rem. �

Returning to the case when k = j, we can redefine the notion of (k, k)-

product-free to mean that the equation a1a2 . . . ak = b1b2 . . . bk implies that

{a1, a2, . . . , ak} = {b1, b2, . . . , bk} as multisets. For example, the primes are

(k, k)-product-free for every k. This is essentially a best-possible result, for

as shown by Erdős [3] in 1938, if S is a subset of the positive integers

which is (2, 2)-product-free, then the number of members of S in [1, x] is

π(x) +O(x3/4).

The equation abc = d2 was recently considered in [5], where it was shown

(see Corollary 1) that if S is a set of integers such that

abc = d2 has no solution with a, b, c ∈ S, d arbitrary,

then the lower asymptotic density of S is at most 1/2. This result was

inadvertently misquoted in [9], where it was asserted that such a result

holds with all of a, b, c, d ∈ S. In fact, this is false since Theorem 3.1 applied

with (k, j) = (3, 2) implies the complementary result that for any ε > 0

there exists a set S of density exceeding 1− ε such that

(3.2) abc = d2 has no solution with a, b, c, d ∈ S.

More precisely, it gives:

Corollary 3.2. For each real number ε > 0, there is a positive integer n

and a subset S of Z/nZ of cardinality at least (1 − ε)n such that abc = d2

has no solution with a, b, c, d ∈ S.
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4. A numerical example

In this section we give the details for a number N for which there exists

a product-free subset of Z/NZ of size larger than N/2. Our example is very

large; it would be of interest to see if a substantially smaller number could

be found.

Let P denote the set of the first 10,000,000 primes and let Q be their

product. For each positive integer j, let

σj =
∑
p∈P

1

pj
, Sj =

∑
rad(m)|Q
Ω(m)=j

1

m
.

We have computed these sums for j up to 13, finding that to 6 decimal

places,

σ1 = 3.206219, σ2 = 0.452247, σ3 = 0.174763, σ4 = 0.076993,
σ5 = 0.035755, σ6 = 0.017070, σ7 = 0.008284, σ8 = 0.004061,
σ9 = 0.002004, σ10 = 0.000994, σ11 = 0.000494, σ12 = 0.000246,
σ13 = 0.000123

and

S1 = 3.206219, S2 = 5.366043, S3 = 6.276492, S4 = 5.796977,
S5 = 4.529060, S6 = 3.130763, S7 = 1.976769, S8 = 1.167289,
S9 = 0.656256, S10 = 0.356061, S11 = 0.188345, S12 = 0.097866,
S13 = 0.050226.

Concerning these calculations, we note that the computation for σ1 = S1

is the most time consuming. The other values of σj represent the starts of

rapidly converging series, and in fact these values can be found on the web

as values of the “prime zeta function.” The remaining values of Sj are easily

computed by a hand calculator using the identity

Sk =
1

k

k∑
j=1

σjSk−j,

where by convention we take S0 = 1 (see [8, page 23, (2.11)]).

Let

N = Q14 =
∏
p∈P

p14

and let

D = {d | N : 3 ≤ Ω(d) ≤ 5 or 11 ≤ Ω(d) ≤ 13}.

A moment’s reflection shows that D is product-free and that each member

of D divides N/rad(N), and so from Lemma 2.3,

SD = {m mod N : gcd(m,N) ∈ D}
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is also product-free. Further,

(4.1)
|SD|
N

=
ϕ(N)

N

∑
d∈D

1

d
.

We may compute ϕ(N)/N using σ1 and σ2 as follows:

log
ϕ(N)

N
=
∑
p∈P

log
(

1− 1

p

)
= −σ1−

1

2
σ2 +

∑
p∈P

(
1

p
+

1

2p2
+ log

(
1− 1

p

))
.

The last sum sum above is the start of a rapidly converging series, so we

easily find that

(4.2)
ϕ(N)

N
> 0.029542.

The sum in (4.1) is∑
d∈D

1

d
= S3 + S4 + S5 + S11 + S12 + S13 = 16.938967.

Thus, with (4.1) and (4.2), we have

|SD|
N

> (0.029542)(16.9389) > 0.5004.

This number N is very large, it is about 101.09×109 . However, it is possible

to reduce the exponents somewhat for the larger primes in N . Let N ′ be N

divided by the 12th power of each prime dividing N that is above 106. Then

D(N ′) > 0.5003N ′ and N ′ is about 101.61×108 . We have made some effort at

finding a smaller example, say below 10108 , but we were not successful.

5. Densities and further problems

Let u ∈ [0, 1) be a real number and, as in the introduction, let N (u)

denote the set of natural numbers n with D(n) > u. Since D(mn) ≥ D(n),

it follows that if n ∈ N (u), so too is every multiple of n. Consequently N (u)

has a logarithmic density δ(N (u)) := limx→∞
1

log x

∑
k∈N (u), k≤x

1
k
, see [1, 2],

denote this by δ(u). We have by Corollary 2.2 that δ(u) > 0 for all u ∈ [0, 1).

We can say a bit more.

Proposition 5.1. We have lim infn→∞D(n) = 1/2. Consequently for 0 ≤
u < 1

2
the set N (u) has both a logarithmic density δ(u) and a natural density

d(u) satisfying d(u) = δ(u) = 1.

Proof. Let p be an odd prime and let a be a positive integer. The set of

nonzero residues mod pa which are the product of a power of p and a qua-

dratic nonresidue mod p is product-free, and this shows that D(pa)→ 1
2

as

a→∞ (recall that D(n) < 1/2 if n/rad(n) does not have at least 6 distinct

prime factors). In addition, the set of nonzero residues mod 2a which are the
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product of a power of 2 and an integer that is 3 mod 4 is product-free, so

that D(2a)→ 1
2

as a→∞. Since D(p)→ 1
2

as p→∞ through the primes,

it follows that D(q) → 1
2

as q → ∞ through the prime powers (which in-

clude the primes). Hence for each real number ε > 0, there are at most

finitely many prime powers q with D(q) ≤ 1
2
− ε. Thus, if D(n) ≤ 1

2
− ε, it

follows that each prime power dividing n must come from this set, forcing

the set of such n to be finite as well. This proves the first statement in the

proposition. Let u ∈ [0, 1/2). By what we just proved, the set N (u) con-

sists of all but finitely many natural numbers. This establishes the second

statement in the proposition. �

It follows from the principal results of [9] that δ(1/2) ≤ 1.56 × 10−8,

and so with Proposition 5.1 it follows that δ(u) is not continuous in the

variable u at 1/2. From the numerical example in the last section, we have

δ(1/2) > 10−1.62×108 . There is of course an enormous (multiplicative) gap

between these two bounds for δ(1/2).

More generally Theorem 2.1 yields a lower bound for δ(u) as u → 1−.

Setting α0 := (1− 1
2
e log 2)−1 ≈ 17.26659, we have

(5.1) δ(u) > 1/ exp exp ((C/(1− u))α0) .

Note that (2.3) allows a slight improvement in this estimate.

It seems likely that for each u, the set N (u) has an asymptotic density

d(N (u)). General facts about asymptotic densities give d(N (u)) ≤ δ(u) ≤
d(N (u)), and a natural density d(u) = δ(u) exists for those values with

d(N (u)) = d(N (u)). Our proofs show that d(N (u)) > 0 for 0 < u < 1 and

d(N (u)) < 1 for u ≥ 1
2
.

As asked in [9], is it true that for u ≥ 1/2, the “primitive” members of

N (u) (namely, they are not divisible by any other member of N (u)) are all

squarefull? If so, then it would follow that the asymptotic density of N (u)

exists for each value of u.
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