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1. Introduction. Long before the proof of AndrewWiles, it was thought
that the path to Fermat’s Last Theorem (FLT) led through the Bernoulli
numbers. Defined by the series

t

et − 1
=

∞∑
n=0

Bn
tn

n!
,

the Bernoulli numbers Bn are rationals, in lowest terms Nn/Dn, and both
the sequence of numerators Nn and denominators Dn have a connection to
FLT. It is known since Ernst Kummer that FLT holds for any odd prime
that does not divide the class number of the cyclotomic field Q[e2πi/p] (such
primes are called “regular”), and that a condition for this to occur is that
p - Nn for all even n ≤ p − 3. The so-called first case of FLT for a prime
exponent p is when p divides none of the powers. Sophie Germain proved
this case when 2p + 1 is also a prime; we now call such primes p Germain
primes. If p is a Germain prime, then 2p+ 1 |D2p, giving the connection to
Bernoulli denominators.

This paper considers the density of n with a fixed value of Dn, the dis-
tribution of distinct values of Dn, and some other related problems. Note
that B0 = 1, B1 = −1/2, and B2k+1 = 0 for all integers k > 0. So, we only
consider the remaining cases D2k, k > 0. We have a precise formula for D2k

in these cases given by the theorem of Karl von Staudt and Thomas Clausen:
D2k is the product of the primes p for which p− 1 | 2k.

2020 Mathematics Subject Classification: Primary 11B05; Secondary 11B68, 11N25,
11N37, 11Y60.
Key words and phrases: shifted prime, Bernoulli number, asymptotic density.
Received 1 June 2021; revised 1 November 2021.
Published online *.

DOI: 10.4064/aa210601-16-11 [1] © Instytut Matematyczny PAN, ***



2 C. Pomerance and S. S. Wagstaff, Jr.

From the von Staudt–Clausen theorem we immediately see that D2k is
squarefree and a multiple of 6. We set some notation. For a positive integerm
let Tm = {p prime : p− 1 |m}. Thus, Tm = {2} when m is odd. For even m,
we have, for example, T2 = {2, 3}, T4 = {2, 3, 5}, T6 = {2, 3, 7}, T8 = T4,
T10 = {2, 3, 11}, etc. As we have seen, D2k is the product of the primes
in T2k.

For n > 0 even, let

Sn = {m > 0 even : Tm = Tn} = {m > 0 even : Dm = Dn}.
Then S2 = {2, 14, 26, 34, 38, . . .}, S4 = {4, 8, 68 . . .}, etc. So Sn is the set of all
even m for which Bm has the same denominator as Bn, namely, the product
of the primes in Tn. In 1980, Erdős and the second author [3] proved that Sn
has a positive asymptotic density for every even n. Sunseri [11] proved that
the density of S2 is at least as large as the density of Sn for every even n > 0.
We will give a simple proof below of a slightly stronger version of Sunseri’s
result.

Let
D := {Dn : n > 0 even} = {6, 30, 42, 66, . . . }.

Further, for d ∈ D, let Fd = min{n : Dn = d}. For example, F6 = 2, F30 = 4,
F42 = 6, and F66 = 10. Let

F := {Fd : d ∈ D} = {2, 4, 6, 10, . . . }.
Let λ denote the Carmichael λ-function. In particular, for n squarefree,
λ(n) = lcm{p − 1 : p |n}, where p denotes a prime variable. We charac-
terize F as the set of values of λ(n) for n > 2 squarefree, and use this
characterization plus some results on the distribution of the image of λ to
get good approximations to the counting functions of D and F .

In this paper, p always denotes a prime. For p > 2, we have Dp−1 = dp
for some even integer d. We show that but for a set of primes of relative
density 0 in the set of primes, this number d itself is in D. Further, we show
that for each fixed d ∈ D, the relative density of the primes p withDp−1 = dp
is positive, and the sum of these densities is 1.

2. Characterization of F . Here we give a connection between the
set F and the image of the Carmichael λ-function.

Proposition 1. For each d ∈ D we have Fd = λ(d). Further,

F = {λ(m) : m > 2 squarefree}.
Proof. Let d ∈ D and suppose n has Dn = d. If p is a prime factor of d,

then we have p−1 |n, by von Staudt–Clausen. Thus, λ(d) |n. Clearly if a | b,
with a, b even, then Da |Db. Thus, Dλ(d) |Dn = d. Also, p | d implies that
p− 1 |λ(d), which implies that p |Dλ(d). Since d is squarefree, we thus have
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d |Dλ(d). Hence, d = Dλ(d) and λ(d) = Fd. This proves the first assertion
and that F ⊂ {λ(m) : m > 2, squarefree}. Say m > 2 is squarefree and
n = λ(m). Let d = Dn. By the von Staudt–Clausen theorem, m | d, so that
n = λ(m) |λ(d). As we saw above, whenever d = Dn, we have λ(d) |n. Thus,
n = λ(d) = λ(m) and the proposition follows.

3. S2 has the greatest density. We introduce more notation. Let A
denote a set of positive integers and write B(A) for the set of all positive
integer multiples of the elements of A. Let A(x) denote the counting function
of A. Write d(A) = limx→∞A(x)/x for the asymptotic density of A, if it
exists. For a real number t, write A(t) for {a ∈ A : a > t}.

We record the following result from [10, Lemmas 1, 2].

Proposition 2. Suppose that A is a set of positive integers not contain-
ing 1 with the property that

(1) lim
t→∞

lim sup
x→∞

B(A(t))(x)/x = 0.

Then d(B(A)) exists and is < 1.

Note that condition (1) essentially asserts that most numbers are not
divisible by a large member of A.

If n is even, let
Un = {mn : Dmn = Dn}.

Note that if n ∈ F , then Un = Sn. For r prime, let

Un,r = {mn ∈ Un : r - m}.

Lemma 1. With the above notation, the sets Un and Un,r have positive
asymptotic densities.

Remark 1. When n ∈ F , the result that Un has positive asymptotic
density follows from [3, Theorem 3].

Proof of Lemma 1. Let

An = {(p− 1)/gcd(p− 1, n) : p− 1 - n}.
It follows from [3, Theorem 2] that condition (1) holds for A = An. Indeed,
An is the disjoint union over the divisors d of n of the sets An,d := {(p−1)/d :
d = gcd(p−1, n), p−1 - n}, and since (1) holds for each separate An,d by [3,
Theorem 2], and since n is fixed, it holds too forAn. Thus, from Proposition 2
we see that B(An) has an asymptotic density < 1. Let Cn = N\B(An). Then
Cn has a positive asymptotic density. Our first assertion now follows upon
noting that Un = nCn = {nm : m ∈ Cn}. Indeed, if p−1 |n then p−1 |nm for
allm, and if p−1 |nm for some p with p−1 - n, then (p−1)/gcd(p−1, n) |m,
so that m /∈ Cn.
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The second assertion follows from the same argument applied to A =
An ∪ {r}.

Lemma 2. If r is prime and n is even, then

d(Unr,r) ≤
1

r
d(Un,r) and d(Un) ≤

r

r − 1
d(Un,r).

Equality in the second assertion occurs only if Dnri = Dn for all i ≥ 0.

Remark 2. It is not clear if there are any pairs n, r with Dnri = Dn

for all i ≥ 0. However, if there are only finitely many Fermat primes, with
p = 22

k
+ 1 being the largest one, then D(p−1)2i = Dp−1 for all i ≥ 0.

Proof of Lemma 2. Consider the map m 7→ m/r on Unr,r. Let m ∈ Unr,r.
We would like to show thatm/r ∈ Un,r. Suppose rJ ‖n. Clearly rJ ‖m/r and
n |m/r, so it remains to show that Dm/r = Dn. If p− 1 |n then p− 1 |m/r,
since n |m/r. Further, if p− 1 |m/r, then p− 1 |m, so that p− 1 |nr, since
Dm = Dnr. But rJ+1 - m/r, so that rJ+1 - p− 1. That is, p− 1 = uri, where
u |n/rJ and i ≤ J . Hence p− 1 |n and m/r ∈ Un,r. The first assertion of the
lemma follows.

For the second, note that Un is contained in the disjoint union of those
sets Unri,r for i = 0, 1, . . . with Dnri = Dn. By the first part of the lemma
applied i times, d(Unri,r) ≤ r−id(Un). It remains to note that

∑
i≥0 r

−i =
r/(r−1). Note also that in the possible case that each Dnri equals Dn, we are
expressing Un as an infinite disjoint union of sets with positive asymptotic
density. Asymptotic density is not necessarily countably additive, but in this
case there is no issue since

⋃
i≥k Unri,r is contained in the multiples of rk

and so has upper density which tends to 0 as k →∞.

Theorem 1. If a, b ∈ F with a | b, then

(2) d(Sb) ≤
1

ϕ(b/a)
d(Sa).

In addition, d(S4) ≤ 3
4d(S2).

Remark 3. Since every member of F is even, Theorem 1 in the case
a = 2 shows that d(S2) is at least one-third larger than every other d(Sn).

Proof of Theorem 1. Let r be a prime factor of b/a with rK ‖ b/a. By the
second part of Lemma 2,

d(Sb) = d(Ub) ≤
r

r − 1
d(Ub,r).

Repeatedly applying the first part of Lemma 2, we have

d(Ub,r) ≤
1

r
d(Ub/r,r) ≤ · · · ≤

1

rK
d(Ub/rK ,r),
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so that
d(Ub) ≤

1

ϕ(rK)
d(Ub/rK ,r).

Thus, (2) follows by induction on the number of distinct prime divisors of b/a.
Now suppose that a = 2, b = 4, and follow the above proof. Note that

D16 is divisible by 17, but D4 is not. Thus, S4 = U4,2 ∪ U8,2, and

d(S4) = d(U4,2 ∪ U8,2) ≤
3

2
d(U4,2).

Also
d(U4,2) ≤

1

2
d(U2,2) =

1

2
d(U2) =

1

2
d(S2).

Hence d(S4) ≤ 3
4d(S2).

Remark 4. The proof shows that d(S6) ≤ 1
2d(S2) and d(S10) ≤ 1

4d(S2),
for example, but provides no way to compare d(S4) with d(S6), or d(S6)
with d(S10).

Corollary 1. Measured by the asymptotic density of their sets of sub-
scripts, more Bernoulli numbers have denominator 6 than any other integer.

Remark 5. Every even number n is in some Sf for f ∈ F , namely for
f = λ(Dn). Moreover, the sets Sf for f ∈ F are pairwise disjoint. It follows
that

∑
f∈F d(Sf ) ≤ 1

2 . In fact, we have

(3)
∑
f∈F

d(Sf ) =
1

2
,

as asserted in [3, Corollary, p. 111]. The proof follows immediately from [3,
Theorem 2], which asserts (1) that for each ε > 0 there is some number B
such that the upper density of those integers divisible by some p− 1 > B is
< ε. (That is, (1) holds.) So, to prove (3), note that there are only finitely
many d ∈ D not divisible by any prime p > B + 1, since members of D
are squarefree, so there are only finitely many f ∈ F not divisible by any
p−1 > B. The numbers n in all other sets Sf are divisible by some p−1 > B
so they comprise a set of upper density < ε. Thus, the sum in (3) is > 1

2 − ε.

4. Statistics for the Sn. If one defines S1 as {n : Tn = T1 = {2}},
then we merely have the set of odd numbers, having density 1

2 . What about
the densities of the various Sn with n even? We have proved that S2 has
density at least 1

3 more than the next largest density. Numerical calculation
suggests that S2 has density about 0.07, followed by S4 (0.03) and S6 (0.01)
in that order. We know from the proof of Theorem 1 that d(S4) is the largest
of the d(Sn) for 4 |n and that d(S6) is the largest of the d(Sn) for 6 |n. As

(1) This result has been sharpened in the recent papers [5], [9].
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mentioned, the proof does not allow us to compare d(S4) and d(S6). It follows
from the methods in [3], [11] that the densities are effectively computable in
principle, and so in principle it is possible to resolve this issue, though such
calculations appear currently to be infeasible.

Tables 1 and 2 give the number of elements in Sn for n = 2k ≤ 112 up
to 10m for m = 5, 7 and 9. In these tables, 2k and 2k′ are the smallest two
elements of S2k, so that 2k ∈ F . The partial densities may be computed
easily from the counts. Note that, in the range from 105 to 109, the partial
densities tend to decrease when T2k contains few primes and increase when
T2k contains many primes.

The tables suggest that

d(S2) > d(S4) > d(S6) > d(S10) > d(S16)
are the five largest densities of the S2k. In other words, the five most popular
denominators of Bernoulli numbers seem to be 6, 30, 42, 66, 510, in that order.

To form S2, begin with the set T of even positive integers. This is the set
of positive integers divisible by both 2− 1 and 3− 1. Now delete from T all
multiples of q − 1 for all primes q > 4. Some primes q > 4 may be skipped

Table 1. Number of elements of S2k below various limits

First Second T2k Count Count Count
2k 2k′ ≤ 105 ≤ 107 ≤ 109

2 14 {2, 3} 7992 758582 73129588
4 8 {2, 3, 5} 3423 320500 30579077
6 114 {2, 3, 7} 1371 125712 11923816

10 50 {2, 3, 11} 1080 99675 9457553
12 24 {2, 3, 5, 7, 13} 495 49498 4751091
16 32 {2, 3, 5, 17} 713 67742 6379485
18 54 {2, 3, 7, 19} 397 38502 3671790
20 340 {2, 3, 5, 11} 289 27745 2609924
22 154 {2, 3, 23} 566 52508 4959735
28 56 {2, 3, 5, 29} 309 29692 2793858
30 1770 {2, 3, 7, 11, 31} 138 13615 1309849
36 3924 {2, 3, 5, 7, 13, 19, 37} 72 7846 799642
40 6680 {2, 3, 5, 11, 41} 92 10044 950144
42 294 {2, 3, 7, 43} 124 12645 1199553
44 484 {2, 3, 5, 23} 160 15325 1433972
46 322 {2, 3, 47} 261 24295 2290634
48 10128 {2, 3, 5, 7, 13, 17} 26 4572 497209
52 104 {2, 3, 5, 53} 164 16638 1558130
58 406 {2, 3, 59} 235 20607 1935087
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Table 2. Number of elements of S2k below various limits

First Second T2k Count Count Count
2k 2k′ ≤ 105 ≤ 107 ≤ 109

60 13620 {2, 3, 5, 7, 11, 13, 31, 61} 21 2917 340111
66 3894 {2, 3, 7, 23, 67} 77 7202 680301
70 350 {2, 3, 11, 71} 83 8815 818849
72 12024 {2, 3, 5, 7, 13, 19, 37, 73} 12 2137 259257
78 1014 {2, 3, 7, 79} 71 6771 636574
80 160 {2, 3, 5, 11, 17, 41} 39 5960 610485
82 574 {2, 3, 83} 150 13715 1293383
84 168 {2, 3, 5, 7, 13, 29, 43} 16 2924 339634
88 968 {2, 3, 5, 23, 89} 53 5593 528007
90 14670 {2, 3, 7, 11, 19, 31} 17 2629 284131
92 184 {2, 3, 5, 47} 116 10822 1017455
96 20256 {2, 3, 5, 7, 13, 17, 97} 7 1645 196489
100 1700 {2, 3, 5, 11, 101} 34 4115 393270
102 1734 {2, 3, 7, 103} 50 5041 473949
106 1378 {2, 3, 107} 120 10794 1007709
108 11772 {2, 3, 5, 7, 13, 19, 37, 109} 14 1593 190046
110 550 {2, 3, 11, 23} 72 6481 609261
112 224 {2, 3, 5, 17, 29, 113} 41 4135 422188

because the multiples of q − 1 were deleted when multiples of r − 1 were
removed for some prime r < q. For example, multiples of 13−1 were deleted
when multiples of 7− 1 were removed. However, we must always delete the
multiples of q − 1 whenever p = (q − 1)/2 is prime. Recall that the prime p
is called a Germain prime if 2p + 1 is also prime. Thus, it is necessary to
remove all multiples of the Germain primes from T to form S2. But it is
not sufficient to delete multiples of Germain primes because, for example,
q = 239 is prime but p = (q − 1)/2 = 119 is not prime and not divisible by
a Germain prime.

Table 3 lists the number of elements of S2k below 106 in each residue class
modulo 8 and the first few odd primes. (The residue classes > 7 modulo 11
and 13 are omitted to make the table fit on a page. The missing values are
similar to the last ones shown in that row of the table.) The value “total” is
the number of elements of S2k less than 106.

The elements of S2 are all ≡ 2 (mod 4) and seem to be equally distributed
between 2 (mod 8) and 6 (mod 8). For each Germain prime p, the residue
class 0 (mod p) is empty because these classes were removed from T when
S2 was formed. The elements of S2 appear to be equally distributed among
other residue classes modulo Germain primes.
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Table 3. Number of elements ≤ 106 of S2k in residue classes

Modulus 0 1 2 3 4 5 6 7
2k = 2, total = 77696

8 0 0 38849 0 0 0 38847 0
3 0 31612 46084
5 0 18636 18565 19097 21398
7 9179 11168 11175 11080 11309 11125 12660
11 0 7661 7671 7682 7730 7726 7649 7627
13 5116 5959 5980 5975 5970 5972 6079 6035

2k = 4, total = 33001
8 9490 0 0 0 23511 0 0 0
3 0 15877 17124
5 0 7868 7244 9186 8703
7 0 5186 5176 5328 5274 6089 5948
11 0 3160 3198 3206 3179 3191 3200 3338
13 0 2693 2633 2679 2637 2695 2682 2669

2k = 6, total = 12996
8 0 0 6508 0 0 0 6488 0
3 12996 0 0
5 0 2859 3346 2867 3924
7 0 2012 1990 1940 2351 2004 2699
11 0 1264 1243 1252 1257 1239 1227 1224
13 0 1042 1044 1023 1025 1018 1028 1068

2k = 10, total = 10339
8 0 0 5175 0 0 0 5164 0
3 0 4954 5385
5 10339 0 0 0 0
7 0 1545 1948 1632 1643 1571 2000
11 0 987 973 1009 989 991 1203 999
13 0 846 856 850 836 816 841 830

The elements of S4 are all divisible by 4 because 5 ∈ T4. At first it was
puzzling why there are so many more of them that are 4 (mod 8) than
0 (mod 8). However, those members of S4 that are 4 (mod 8) comprise U4,2
and those that are 0 (mod 8) comprise U8,2, using the notation introduced
in the previous section. In the proof of Theorem 1 we saw that d(U8,2) ≤
1
2d(U4,2), since dividing a member of U8,2 by 2 gives a member of U4,2. This
explains part of the favoring of 4 (mod 8) over 0 (mod 8), but not all. In fact,
multiplying a member of U4,2 by 2 does not always give a member of U8,2.
Another force at work here is that if m > 3 is odd, then 4m ∈ S4 if and only
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if for each d |m with d > 3, both 2d + 1 and 4d + 1 are composite. But for
8m ∈ S4, there is the additional requirement that 8d+ 1 is composite.

As we mentioned earlier, every element of S2k is divisible by its least
element 2k. There are no multiples of 7 in S4, S6 or S10 because 29, 43 and
71, respectively, are prime. Similarly, there are no multiples of 13 in S4, S6
or S10 because 53, 79 and 131 are prime.

5. The distribution of distinct Bernoulli denominators. Let
D(x), F (x) be the counting functions of D and F , respectively, and let

β = 1− (1 + log log 2)/log 2 = 0.08607 . . . ,

the Erdős–Tenenbaum–Ford constant.

Theorem 2. We have, as x→∞,

D(x) = x/(log x)1+o(1), F (x) = x/(log x)β+o(1).

In particular, d(D) = d(F) = 0.

Proof. Note that Proposition 1 implies that the function sending d ∈ D
to λ(d) ∈ F is a bijection. Thus,

D(x) = #{λ(d) : d ∈ D, d ≤ x} ≤ #{λ(n) : n ≤ x}.
Further, the second part of Proposition 1 implies that

F (x) = #{λ(n) : n > 2 squarefree, λ(n) ≤ x}
≤ #{λ(n) : n such that λ(n) ≤ x}.

In [8, Theorem 1.3] it is shown that

#{λ(n) : n ≤ x} = x/(log x)1+o(1) as x→∞,
and [8, Theorem 1.1] implies that

(4) #{λ(n) : λ(n) ≤ x} ≤ x/(log x)β+o(1) as x→∞.
So the upper bounds implicit in the theorem follow. In [6] it is shown that
equality holds in (4). In fact, the method of proof gives the same bound for
#{λ(n) ≤ x : n squarefree}, so by this result, the proof for F is complete.
We show in Theorem 3 below that D contains the numbers 6p for a positive
proportion of the primes p, so the lower bound for D will follow from the
prime number theorem.

Remark 6. Looking at small values of F it seems that many are of the
form p − 1 with p prime. Every p − 1 is in F for p > 2 prime, as is easily
seen, but Theorem 2 shows that most members of F are not in this form.

Table 4 shows the growth rate of F , the set of first elements 2k of the S2k.
These numbers were found by computing the fractional parts of all B2k for
2k ≤ 10m via a sieve, as in [3], sorting them and counting the unique values.
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Table 4. Number of elements ≤ 10m of F

m 5 6 7 8 9
F (10m) 24662 235072 2261011 21876975 212656697
R(10m) .476 .478 .479 .480 .481

Table 5. Number of elements ≤ 10m of D

m 5 6 7 8 9
D(10m) 513 3649 27936 226111 1893060

D(10m)/π(10m) .053 .046 .042 .039 .037

High enough precision was used to distinguish close but not equal fractional
parts.

There are a number of problems where the expression x/(log x)β arises,
and in some of these a secondary factor of (log log x)c arises in the denomi-
nator, sometimes with c = 3/2 (see [4]) and sometimes with c = 1/2 (see [1]
and [5]). We have no compelling reason to suggest such a factor here, but
we have noticed that F (x) has a ratio with f(x) := x/((log x)β(log log x)1/2)
that stays fairly constant. In Table 4 we have also recorded the ratios R(x) =
F (x)/f(x).

Table 5 shows the growth rate of D, the set of Bernoulli denominators.
These counts were computed with Mathematica using the criterion that an
even d > 2 is in D if and only if d = Dλ(d). The counts were then checked
via the sieve procedure that we used for Table 4. Note that Theorem 2 does
not assert that D(x)/π(x) tends to a limit or is bounded, but we do know
that these ratios have a positive lim inf.

5.1. A partition of the set of primes. Given an odd prime p, the
least n with p |Dn is evidently p− 1. Let dp = Dp−1/p. For example,

d3 = 2, d5 = 6, d7 = 6, d11 = 6, d13 = 210, d17 = 30, d19 = 42.

For d even, let
Pd = {p prime : dp = d},

so that the sets Pd give a partition of the odd primes.

Lemma 3. For each odd prime p we have λ(dp) | p− 1. Further, λ(dp) <
p− 1 if and only if dp ∈ D.

Proof. Note that dp is the product of those primes q < p where q−1 | p−1.
Thus, λ(dp) is a least common multiple of some of the divisors of p − 1, so
we must have λ(dp) | p−1 and Dλ(dp) |Dp−1. Also, dp |Dλ(dp) since this holds
for all squarefree numbers larger than 2. If λ(dp) = p − 1, then p |Dλ(dp).
But p - dp, so dp 6= Dλ(dp) and dp /∈ D. If λ(dp) < p−1, then Dλ(dp) | dp since
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q |Dλ(dp) implies q − 1 |λ(dp), which implies q − 1 | p− 1 and q < p, so that
q | dp. Hence dp = Dλ(dp) and dp ∈ D.

A consequence of Lemma 3 is that if d /∈ D, then #Pd ≤ 1. Indeed, if
p ∈ Pd with d /∈ D, the lemma implies that λ(d) = p − 1, so p is uniquely
determined from d. On the other hand, in the next theorem, we see that if
d ∈ D, then Pd is a quite thick set of primes.

Theorem 3. For each d ∈ D there is a positive constant cd such that the
relative density of Pd in the set of prime numbers is cd.

Sketch of proof. First note that if p ∈ Pd then p ≡ 1 (mod λ(d)). From
[7, Theorem 3] it follows that there is an absolute constant c > 0 such that
for any 3 ≤ z ≤ x, the number of primes p ≤ x such that p− 1 has a divisor
of the form q − 1 with q prime and z < q < p is O(π(x)/(log z)c). This
result is completely analogous to [3, Theorem 2]. We apply this to primes
p ≡ 1 (mod λ(d)), which comprise a positive proportion of all primes by the
prime number theorem for residue classes. So, it follows from the method in
[3, Theorem 3] that the set

{p ≡ 1 (mod λ(d)) : q − 1 | p− 1 implies q − 1 |λ(d) or q = p},
where p, q are understood as primes, has a positive relative density cd in the
set of all primes. Since

∏
q−1|λ(d) q = d by Proposition 1, for such primes p

we have Dp−1 = dp.

We conjecture that c6 is the largest of the densities cd. Table 6 has some
counts for d = 6, 30, 42, 66 plus fractions of all primes to the same bounds.

We noticed in tabulating D that there are quite a few more values of
d ∈ D with d/6 ≡ 2 (mod 3) than with d/6 ≡ 1 (mod 3). This phenomenon
may be due to the robust size of P6 as seen in Table 6: every member
of P6 when divided by 6 is ≡ 2 (mod 3). To be sure, the other cases in
Table 6 count against this trend, but when counting members of D up to x,
the P6 members involve primes to x/6, while the other cases involve primes

Table 6. Number of primes p ≤ 10k with Dp−1 = dp and fraction of all primes to 10k

d k = 5 6 7 8 9
6 1135 8772 71421 601804 5189442

.1183 .1117 .1075 .1045 .1021
30 600 4312 34065 278709 2358192

.0626 .0549 .0513 .0484 .0464
42 480 3543 27722 226087 1896172

.0500 .0451 .0417 .0392 .0373
66 275 1933 14859 120565 1010251

.0287 .0246 .0224 .0209 .01999
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to x/30 and smaller. There may well be other forces at play here, but this
observation may partially demystify the phenomenon. We do not know if
this imbalance continues asymptotically since we do not know if D(x) is of
order of magnitude π(x). (Note that the “o(1)” in Theorem 2 may have some
significance.)

We have seen in the proof of Theorem 3 that for many primes p we
have Dp−1 = dp with d ∈ D. However, this is not true for all odd primes.
For example, note that D12 = 210 · 13 and 210 /∈ D. We show that this is
uncommon.

Theorem 4. There is a positive constant c such that the number of
primes p ≤ x with Dp−1/p /∈ D is O(π(x)/(log x)c).

Proof. Let p ≤ x be a prime and let q be the largest prime factor of
p − 1. Let B = x1/log log x. If q ≤ B, that is, p − 1 is a B-smooth number,
we can bound the number of such p by the number of B-smooth numbers at
most x. By a standard result of de Bruijn, this count is Ok(x/(log x)k) for
any fixed k. In particular it holds for k = 2, so we may ignore such primes
and assume that q > B. Next, we again apply [7, Theorem 3] mentioned in
the proof of Theorem 3. We apply this with z = B, so the number of primes
p ≤ x divisible by some shifted prime r − 1 with B < r < p is negligible.
Thus, we may assume that p − 1 has no such divisor. Let n be the largest
B-smooth divisor of p−1, so that n ≤ (p−1)/q < p−1. Then Dp−1 = Dnp,
so that Dp−1/p ∈ D.

Remark 7. Similarly to Remark 5, we have∑
d∈D

cd = 1.

This follows from Theorem 4 and from the fact that for large B, the primes p
divisible by some shifted prime q−1 > B with q < p are sparse, which follows
from [7, Theorem 3].

One might wonder how strong Theorem 4 is, or even if there are infinitely
many primes as described in the theorem. We can prove this conditionally
on the prime k-tuples conjecture. Further, from the Hardy–Littlewood quan-
titative form of k-tuples, we can show there are quite a few of these primes.

Theorem 5. Assuming the prime k-tuples conjecture, there are infinitely
many primes p with Dp−1/p /∈ D. Assuming the quantitative form of this
conjecture due to Hardy and Littlewood, the number of such primes p ≤ x is
� π(x)/log x.

Proof. Let q be a prime with q ≡ 3 (mod 4), q > 3, and p = 2q − 1
prime. Let d be such that Dp−1 = dp. Suppose that d = Dn for some n.
Since 4 | p − 1 and p > 5, we have 5 | d, so that 4 |n. Also q | d, so q − 1 |n.
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Hence lcm(4, q − 1) = 2(q − 1) = p − 1 |n. This implies that p |Dn = d
contradicting Dp−1 = dp squarefree. Thus, Dp−1/p /∈ D. The prime k-tuples
conjecture implies there are infinitely many such p, and the quantitative
form implies that there are � π(x)/log x of them at most x.

Table 7 illustrates Theorems 4 and 5 by showing the number of primes p
for which Dp−1/p /∈ D.

Table 7. Number of p ≤ 10m with Dp−1/p /∈ D

m 5 6 7 8 9
Count 4183 34647 293117 2525121 22119959

Count/π(10m) .436 .441 .441 .438 .435

A puzzle here: These counts are holding steady at about 44% of the
primes, yet Theorem 4 says the fraction should decay to 0, though maybe
the decay is slow. This is similar to the decay of F (10m)/10m seen in Table 4,
though it definitely seems more glacial in Table 7.

5.2. Further problems. The first few Bernoulli denominators all have
the form p − 1 for some primes p: 7, 31, 43, 67, 139, 283, 331. One might
wonder whether there are infinitely many d ∈ D with d + 1 composite and
infinitely many with d + 1 prime. Table 8 shows the fractions of prime and
composite d + 1 with d ∈ D below various powers of 10. It looks like the
composite cases predominate. A possible proof: It likely follows from the
proof of [8, Theorem 1.3] that

(5) #{λ(p− 1) : p ≤ x} ≤ π(x)/(log x)1+o(1)

as x→∞. We have
#{p ≤ x : p− 1 ∈ D} = #{p ≤ x : p− 1 = Dλ(p−1)}

≤ #{λ(p− 1) : p ≤ x},
so that (5) would imply that #{p ≤ x : p − 1 ∈ D} is bounded above by
π(x)/(log x)1+o(1). Thus, from Theorem 2, it would be unusual for d ∈ D to
have d+ 1 prime.

A lower bound of similar quality follows from the strong form of the
Hardy–Littlewood conjecture as in Theorem 5. For this, take primes r with

Table 8. Number and fraction of composite and prime d+ 1 ≤ 10m for d ∈ D

m 3 4 5 6 7 8 9
Composite 4 56 361 2812 22759 189894 1628333

Fraction .286 .667 .704 .771 .815 .840 .860
Prime 10 28 152 837 5177 36217 264727

Fraction .714 .333 .296 .229 .185 .160 .140
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q = 2r + 1 prime and p = 6q + 1 prime. Then λ(p − 1) = q − 1 = 2r, and
D2r = 6q = p− 1, so p− 1 ∈ D. By Hardy–Littlewood, the number of such
p ≤ x is � π(x)/(log x)2.

Let ψ(n)→∞ arbitrarily slowly. Then the set

{n even : Dn > ψ(n)}
has asymptotic density 0. This follows from Remark 5. On the other hand,
there are a fair number of n with Dn large: we have

#{n even : n ≤ x, Dn > n} � x/log x.

This follows from Theorem 3 and the prime number theorem. In addition, it
follows from [2, Theorem 1] that there are positive constants c, c′ such that
Dn > exp(nc/log logn) for infinitely many even n and Dn < exp(nc

′/log logn)
always.

In Tables 1 and 2 we recorded the second smallest member of S2k for
2k ∈ F with 2k ≤ 112. It would be interesting to study the distribution of
these numbers.
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Abstract (will appear on the journal’s web site only)
We study the asymptotic density of the set of subscripts of the Bernoulli

numbers having a given denominator. We also study the distribution of dis-
tinct Bernoulli denominators and some related problems.


