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Historically, number theorists have been interested in numbers

with special properties.

Examples dating back to Euclid include the prime numbers and

perfect numbers.

(A perfect number is the sum of its proper divisors; for example

6 = 1 + 2 + 3.)
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Euclid teaching
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Euclid: There are infinitely many primes.

Euclid: The following formula produces perfect numbers:

2n−1(2n − 1), when 2n − 1 is prime.

For example, 2n − 1 is prime for n = 2,3,5, and 7, so we have

the perfect numbers

6 = 2(22−1), 28 = 22(23−1), 496 = 24(25−1), 8128 = 26(27−1).
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Two obvious questions:

• Are all perfect numbers given by the formula of Euclid?

• Are there infinitely many perfect numbers?

On the first question, all we know is the theorem of Euler that
all even perfect numbers are given by Euclid’s formula. It is
conjectured there are no odd perfect numbers, and we know
some stringent conditions that imply you will not casually
discover one.

On the second question, it is conjectured that Euclid’s formula
gives infinitely many perfect numbers.
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Leonhard Euler
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Presumably Euclid already knew that if 2n − 1 is prime, then n

is prime, and that this condition is not sufficient:

211 − 1 = 23× 89.

We now refer to primes 2n − 1 as Mersenne primes after a 17th

century monk who had an incorrect conjecture about them!

We know 47 examples of Mersenne primes, the largest being

243112609 − 1.
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TIME Magazine’s 29-th greatest invention of 2008.
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A more contemporary way of looking at some of these ancient

questions is to study them statistically.

For example, if there are infinitely many Mersenne primes, how

do they grow?

We know of course that there are infinitely many primes, but

how do they grow?
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Karl Friedrich Gauss
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Gauss, as a teenager, studied an extensive table of primes, and

noticed they tend to thin out according to a fairly precise law:

near x the proportion of numbers that are prime is about

1/ logx (natural log). Thus, if π(x) is the number of primes in

the interval [1, x], then we should have

π(x) ≈
∫ x

2

dt

log t
.

Call this integral li(x).

But what is meant by that pesky symbol “≈”?

One possibility: Gauss meant that

π(x)/li(x)→ 1, as x→∞.
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Using L’Hôpital’s rule, it is easy to see that

li(x)

x/ logx
→ 1, as x→∞.

So,

π(x)

li(x)
→ 1 ⇐⇒

π(x)

x/ logx
→ 1.

Then why would Gauss use the more difficult function li(x)?

Probably because he meant the stronger assertion:

|π(x)− li(x)| is much smaller than li(x).

Let’s check it out.
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From computations of Gourdon, based on algorithms of

Meissel, Lehmer, Lagarias, Miller, Odlyzko and more recently

Deléglise, Rivat, Zimmermann:

π(1022) = 201,467,286,689,315,906,290

li(1022) = 201,467,286,691,248,261,498

1022/ log(1022) = 197,406,582,683,296,285,296

In fact, the Riemann Hypothesis is equivalent to the assertion:

|π(x)− li(x)| ≤ x1/2 logx, x ≥ 3.

(I call this the calculus-class version of the RH.)
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In case you’re interested, here is the precalculus-class version of

the RH:

Let F (x) denote the natural logarithm of the least common

multiple of the integers in [1, x]. Then, for all x ≥ 3,

|F (x)− x| ≤ x1/2(logx)2.
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We don’t yet know the RH, but we do know the

Prime Number Theorem:

Hadamard, de la Vallée-Poussin (1896) As x→∞, we have

π(x)/li(x)→ 1.

The RH implies that π(x) = li(x) +O(x1/2+ε) for each ε > 0,

but we don’t even know if there is any positive fixed ε with

π(x) = li(x) +O(x1−ε).
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Jacques Hadamard Charles-Jean de la Vallée-Poussin
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Now let us turn our statistical eye on the other problem of

Euclid, namely perfect numbers. Let P (x) denote the number

of perfect numbers in [1, x]. What can we say about P (x)?

Since it is not even known that there are infinitely many perfect

numbers, getting a lower bound for P (x) that tends to infinity

seems fairly hopeless.

But what about an upper bound for P (x)?

And what might we conjecture for P (x)?
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It seems natural to partition the perfect numbers into evens

and odds, given the Euclid–Euler theorem that gives a formula

for the even ones.

Let P0(x) denote the number of even perfects in [1, x], and let

P1(x) denote the number of odd perfects in [1, x].

Since an even perfect number is of the form 2n−1(2n − 1)

where 2n − 1 is prime (and so n is prime), it follows that

P0(x) ≤ π(logx) = O

(
logx

log logx

)
.
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Experimentally and heuristically, P0(x) grows much smaller

than logx/ log logx. Note that when n is prime, 2n − 1 has no

prime factors below n. Note too that a random number m is

prime with probability about 1/ logm and if m has no factors

below log2m, this probability is enhanced to (c log logm)/ logm

where c = eγ and γ is the Euler–Mascheroni constant. So, if

2n − 1 behaves like a “random” number of the same

magnitude, it is prime with probability (eγ logn)/(n log 2).

Summing this expression over prime numbers n with

2n−1(2n − 1) ≤ x then suggests that

P0(x)

(eγ/ log 2) log logx
→ 1, x→∞.

This roughly corresponds to reality in that even perfects seem

to be growing at a rate proportional to log logx and the

constant is in the range 2.5 to 3.
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We don’t know any odd perfect numbers, and it is thought

that there are none. In this case, P1(x) would be identically 0.

Can we at least show that P1(x) is at most a small function of

x? Here is a history of efforts:

Volkmann (1955) : O(x5/6)

Hornfeck (1955) : O(x1/2)

Kanold (1956) : o(x1/2)

Erdős (1956) : O(x1/2−δ) (some fixed δ > 0)

Kanold (1957) : O(x1/4+ε) (every fixed ε > 0)

Hornfeck & Wirsing (1957) : O(xε)

Wirsing (1959) : xO(1/ log logx)
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Here’s a proof of the second result: P1(x) = O(x1/2):

Let σ(n) denote the sum of all of n’s positive divisors, so n is
perfect if and only if σ(n) = 2n. Using that σ is multiplicative it
is easy to prove another result of Euler: If n is an odd perfect
number, then n = pkm2 where p is a prime that is 1 (mod 4)
not dividing m and k ≡ 1 (mod 4).

Next, using that n = pkm2 is perfect,

2 =
σ(n)

n
=
σ(pk)

pk
σ(m2)

m2
,

so that in lowest terms, the fraction 2m2/σ(m2) has
denominator a power of p. We conclude that m determines p
and thus the odd perfect number n.

But if n ≤ x, then m ≤ x1/2, so P1(x) ≤ x1/2.

21



Let’s try our hand at some other difficult or intractable

elementary problems, again from a statistical point of view:

• twin primes

• amicable and sociable numbers

• Carmichael numbers
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The twin prime conjecture dates from 1849 or perhaps earlier.

In that year, de Polignac published the more general conjecture

that for each even number k there are infinitely many pairs of

primes p, p′ with p′ − p = k. The twin prime conjecture is the

special case k = 2.

Twin primes certainly appear fairly common. After 2, the first

prime that is not part of a twin pair is 23, and in fact, up to

100, just 9 of the 25 primes are not part of a twin pair.

The problem remains unsolved, but short of proving there are

infinitely many, what can we do?

First, we can ask why it is a conjecture, other than that there

is numerical evidence.
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If we take the probabilistic view that the proportion of numbers
near x that are prime is about 1/ logx, then the proportion of n
near x where n and n+ 2 are both prime perhaps should be
about 1/(logx)2, and the number of such n below x should be
about ∫ x

2

dt

(log t)2
.

However, there is a problem with this reasoning since n and
n+ 2 being prime are not “indepependent events”. For
example, if n > 2 is prime, then n+ 2 is odd, so it should have
an enhanced chance of being prime. Similarly, if n > 3 is prime
it is either 1 or 2 (mod 3), these two events should be equally
likely (yes, this is a theorem), and so n+ 2 is equally likely to
be 0 or 1 (mod 3). That is, if n is prime, then the chance that
n+ 2 is divisible by 3 is about 1/2, instead of 1/3 as with a
random integer.
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Working through this idea we come up with the revised

possibility: The number of primes n ≤ x with n+ 2 prime is

approximately

2c
∫ x

2

dt

(log t)2
, c =

∏
p>2

1− 1/(p− 1)

1− 1/p
= 0.66016 . . . .

Let’s check it out at x = 260 (from the website of Oliveira e

Silva):

Actual count : 925,800,651,712,810

Predicted count : 925,800,674,606,702.
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We do know that the order of magnitude of the prediction,

O(x/(logx)2), is correct as an upper bound. This was proved

by Brun close to 100 years ago. From this result we know that

actually twin primes thin out much faster than the primes do,

in fact

Euler :
∑

p prime

1

p
=∞

Brun :
∑

p,p+2 primes

(
1

p
+

1

p+ 2

)
= B <∞.
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Viggo Brun
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It is difficult to compute Brun’s constant B, the sum of the

reciprocals of the twin primes. It is effective, in a theoretical

sense, but not so much in a practical sense. Probably it is

about 1.902, but all we know rigorously is that it is in the

interval (1.83, 2.34), the lower bound coming from calculation

with known twin primes, and the upper bound with a

numerically explicit version of Brun’s proof in the recent thesis

of Klyve.

As for lower bounds, we know that there are infinitely many

primes p such that either p+ 2 is prime or p+ 2 is the product

of two primes (Chen). And we have the new sensational result

of Goldston, Pintz, & Yıldırım that there are indeed infinitely

many gaps between consecutive primes that are much smaller

than the average gap.
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Pythagoras
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Let s(n) = σ(n)− n, the sum of n’s divisors smaller than n.

The function s(n) was considered by Pythagoras, about 2500

years ago.

Pythagoras: s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.
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In Genesis it is related that Jacob gave his brother Esau a
lavish gift so as to win his friendship. The gift included 220
goats and 220 sheep.

Abraham Azulai, ca. 500 years ago:

“Our ancestor Jacob prepared his present in a wise way. This
number 220 is a hidden secret, being one of a pair of numbers
such that the parts of it are equal to the other one 284, and
conversely. And Jacob had this in mind; this has been tried by
the ancients in securing the love of kings and dignitaries.”

Ibn Khaldun, ca. 600 years ago in “Muqaddimah”:

“Persons who have concerned themselves with talismans affirm
that the amicable numbers 220 and 284 have an influence to
establish a union or close friendship between two individuals.”
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Ibn Khaldun
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Al-Majriti, ca. 1050 years ago reports in “Aim of the Wise”

that he had put to the test the erotic effect of

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

(This was a very early application of number theory, far

predating public-key cryptography . . . )
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Eugène Catalan Leonard Dickson
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In 1888, Catalan suggested that we iterate the function s and

conjectured that one would always end at 0 or a perfect

number. For example:

s(12) = 16, s(16) = 15, s(15) = 9, s(9) = 4, s(4) = 3, s(3) = 1,

and s(1) = 0. Perrott in 1889 pointed out that one might also

land at an amicable number. In 1907, Meissner said there may

well be cycles of length > 2. And in 1913, Dickson amended

the conjecture to say that the sequence of s-iterates is always

bounded.

Now known as the Catalan–Dickson conjecture, the least

number n for which it is in doubt is 276. Guy and Selfridge

have the counter-conjecture that in fact there are a positive

proportion of numbers for which the sequence is unbounded.
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Richard Guy, John Conway, & Elwyn Berlekamp
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John Selfridge
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Suppose that

n1
s−→ n2

s−→ n3
s−→ . . .

s−→ nk
s−→ n1,

where n1, n2, . . . , nk are distinct. The numbers appearing here

are called sociable (of order k).

Thus, sociable numbers of order 1 are perfect and sociable

numbers of order 2 are amicable.

Though Meissner first posited in 1907 that there may be

sociable numbers of order > 2, Poulet found the first ones in

1918: one cycle of length 5 and another of length 28. The

smallest of order 5 is 12,496, while the smallest of order 28 is

14,316.
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Today we know of 175 sociable cycles of order > 2, all but 10

of which have order 4. (The smallest sociable number of order

4 was found by Cohen in 1970 is 1,264,460.)

We know 47 perfect numbers and about 12 million amicable

pairs.

We know the perfect numbers are sparse. What about the

other amicables and other sociables?

Let Sk(x) denote the number of integers in [1, x] that are

sociable of order k.
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Let logk x denote here the k-fold iteration of log.

Erdős (1955) : S2(x) = o(x)

Erdős & Rieger (1973) : S2(x) = O
(
x/(log4 x)1/2−ε

)
Erdős & Rieger (1975) : S2(x) = O(x/ log3 x)

Erdős (1976) : Sk(x) = o(x) for each fixed k

P (1977) : Sk(x) = O
(
x/ exp(c(log3 x log4 x)1/2))

)
P (1981) : S2(x) = O

(
x/ exp((logx)1/3)

)

Let S(x) =
∑
k Sk(x) denote the number of sociable numbers in

[1, x].

Kobayashi, Pollack, & P (2009) : S(x) ≤ (c+ o(1))x, where

c ≈ 0.002 is the density of the odd numbers n with s(n) > n.
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Mitsuo Kobayashi Paul Pollack

42



Our last topic is Carmichael numbers.

Fermat’s “little theorem”: If n is prime, then

an ≡ a (mod n) (1)

for every integer a.

Proof: It is true for a = 0. Assume true at a. Then

(a+ 1)n ≡ an + 1 ≡ a+ 1 (mod n).

Thus it is true for every integer a in [0, n− 1] so it is true for

every integer a. �

A Carmichael number is a composite number where (1) holds

for every integer a.
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Do any exist? An easy criterion for n to be a Carmichael

number is that

• n is composite,

• n is squarefree,

• p− 1 | n− 1 for each prime p | n.

This criterion was discovered by Korselt in 1899, some 11 years

before Carmichael found the first examples.
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Robert D. Carmichael
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One can see that

561 = 3× 11× 17,

1105− 5× 13× 17,

1729 = 7× 13× 19

all satisfy the criterion, so are Carmichael numbers. But are
there infinitely many of them? Let C(x) denote the number of
Carmichael numbers in [1, x].

Erdős (1956): C(x) ≤ x1−c(log3 x/ log2 x).

And Erdős gave a heuristic that C(x) > x1−o(1).

(For a survey that codifies the Erdős ideas see:
CP, Two methods in elementary analytic number theory, in
Number theory and applications, Kluwer, 1989, pp. 135–161.)
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Alford, Granville, & P (1994): C(x) > x2/7 for all large x.

We dedicated the paper to Erdős for his 80th birthday.



Paul Erdős
47



THANK YOU!
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