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Suppose that G is a group and g ∈ G has finite order n. Then

〈g〉 is a cyclic group of order n.

For each t ∈ 〈g〉, the integers m with gm = t form a residue

class mod n. Denote it by

logg t.

The discrete logarithm problem is the computational task of

finding a representative of this residue class; that is, finding an

integer m with gm = t.
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Finding a discrete logarithm can be very easy. For example, say

G = Z/nZ and g = 1. More specifically, say n = 100 and t = 17.

We are asking for the number of 1’s to add in order to get 17.

Hmmm.

Let’s make it harder: take g as some other generator of Z/nZ.

But then computing logg t is really solving the congruence

mg ≡ t mod n

for m, which we’ve known how to do easily essentially since

Euclid.
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The cyclic group of order n:

What does this title mean, especially the key word “The”?

Take G1 = Z/100Z and G2 = (Z/101Z)∗. Both are cyclic groups
of order 100. Both are generated by 3. And 17 is in both
groups.

So, there are two versions of computing log3 17, one in G1 and
one in G2.

In G1, we are solving 3m ≡ 17 mod 100. The inverse of 3 is 67,
so m ≡ 17 · 67 ≡ 39 mod 100.

In G2, we are solving 3m ≡ 17 mod 101. And this seems much
harder.
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The moral: when someone talks about the cyclic group of a

given order, they are not concerned with computational issues.

The algorithmic question of computing discrete logarithms is

venerable and also important. Why important?

4



Whitfield Diffie Martin Hellman
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The Diffie–Hellman key-exchange protocol:

Say we have a cyclic group generated by g, which everyone
knows. Alice has a secret integer a and “publishes” ga.
Similarly, Bob has a secret integer b and publishes gb.

Alice and Bob want to set up a secure session with a secret key
that only they know, yet they want to set this up over a public
line. Here’s how they do it: Alice takes Bob’s group element gb

and raises it to her secret exponent a, getting (gb)a = gab. Bob
arrives at the same group element via a different method,
namely (ga)b = gab.

Eve (an eavesdropper) knows something’s afoot and knows ga

and gb, but apparently cannot easily compute gab without
finding either a or b, that is without solving the dl problem.
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So, a group that is well-suited for cryptographic purposes is

one where

• it is easy to apply the group operation;

• it is difficult (in practice) to solve the discrete logarithm

problem.
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Now let us focus on a different problem, the generators of a

finite cyclic group G.

An easy fact: If G = 〈g〉 and |G| = n, then gj is a generator of

G precisely when (j, n) = 1. Thus, G has ϕ(n) generators.

Now let’s look at the family of groups (Z/pZ)∗, the

multiplicative group for a prime p. It is cyclic of order p− 1 and

so has ϕ(p− 1) generators.
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There are already interesing questions:

• Given a prime p, how easy is it to find a generator for
(Z/pZ)∗?

• What is the expected number of random choices from
(Z/pZ)∗ until the group is generated?

However, I would like to move towards counting problems.

We represent elements of (Z/pZ)∗ with integers, and if “p” is
hidden, we may not know exactly which group we are talking
about. For example, take the element 10. Do we mean 10
(mod 3), 10 (mod 7), 10 (mod 11), . . . ?
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Gauss asked the following question. If you take a prime p 6= 2,5

and convert 1/p into decimals, then the decimal is repeating,

and the length of the period is a divisor of p− 1. Is it actually

equal to p− 1 infinitely often?

This question is equivalent to: Do we have (Z/pZ)∗ = 〈10〉 for

infinitely many primes p?

Artin’s conjecture (1927): If a is an integer not equal to −1 nor

a square, then there are infinitely many primes p with

(Z/pZ)∗ = 〈a〉. In fact, there is a positive constant Aa such that

the number of such primes in [1, x] is (Aa + o(1))π(x).
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Even the weak form of Artin’s conjecture, which asserts the

infinitude of primes p with (Z/pZ)∗ = 〈a〉 is unsolved, but we

have some tantalizing theorems.

Hooley (1967): Assuming the Riemann hypothesis for algebraic

number fields (the “GRH”), Artin’s conjecture holds.

Gupta & Murty, Heath-Brown (1984, 1986): The weak form of

Artin’s conjecture holds for every prime value of a, except at

most two of them.

Even so, we still do not know a single value of a for which the

weak form holds!
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It is not so hard to see why we believe Artin’s conjecture to be
true.

Let’s try it for a = 2. For (Z/pZ)∗ = 〈2〉 to hold, 2 should not
fail any “q-test” for prime q. Failing means that q | p− 1 and 2
is a qth power mod p. By the Chebotarev density theorem, the
proportion among all primes of primes p which are 1 (mod q)
and for which 2 is a qth power is 1/(q2 − q). Thus, we should
have the proportion of primes p that never fail; that is, for
which (Z/pZ)∗ = 〈2〉, is

∏
q prime

(
1−

1

q2 − q

)
.

This product, known as Artin’s constant, is equal to
0.3739558 . . . . Sometimes we need correction factors. For
example, if a = 8, we also cannot take any prime p that is 1
(mod 3).
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When counting up to x one must deal with the Chebotarev

theorem when q has some size compared to x; that is, we

cannot assume that q is fixed with just x→∞. This is how the

GRH enters the fray.

Consider a totally unrelated problem: How many primes p in

[1, x] have p− 1 squarefree? Here too p must not fail any

q-test, which now means that q2 - p− 1. The proportion of

primes p which fail is again 1/(q2 − q), so the proportion of

primes p with p− 1 squarefree should be exactly Artin’s

constant. Since this is dealing only with primes in residue

classes, sieve methods can be used to resolve the problem of

larger q’s, and this then becomes an unconditional theorem.
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The primes seem to be hogging the spotlight here. What

about analogues for the multiplicative group (Z/nZ)∗? In

general this group is not cyclic. Let λ(n) denote the order of

the largest cyclic subgroup. It is also known as the exponent of

(Z/nZ)∗, since it is the smallest positive number such that

aλ(n) ≡ 1 (mod n) for every a coprime to n.

Questions:

For which integers a are there infinitely many integers n

coprime to a for which the order of a in (Z/nZ)∗ is λ(n)?

If there are infinitely many n, do they form a positive

proportion of the natural numbers?
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Let Na(x) denote the number of integers n in [1, x] where a has

order λ(n) in (Z/nZ)∗.

Let E denote the set of integers which are either a power

higher than the first power or a square multiplied by −1 or ±2.

Li (1999): For each integer a ∈ E, Na(x) = o(x).

Li (1999): For every integer a, lim inf Na(x)/x = 0.

Li & P (2003): Assuming the GRH, for each integer a 6∈ E,

lim supNa(x)/x > 0.
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Shuguang Li
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This unexpected oscillation for Na(x)/x has an elementary
analogue, that is also perhaps unexpected.

Consider a game where I start out giving you n quarters. You
either give them all back to me, or you get to keep one of
them. Here’s how it’s played:

You flip all of them, and give me all that land heads.
You flip the remaining coins, and again give me all that land
heads.
You continue with this unless you have exactly one quarter left,
in which case you get to keep it.

Let Pn be the probability that you get to keep a quarter. What
is limPn?

Answer: The limit does not exist.
18



For an integer a with |a| > 1, let

Ta(x) =
1

x

∑
n∈[1,x]
(n,a)=1

(order of a in (Z/nZ)∗).

So, here we are not so concerned with the maximal possible

order of a, but what happens on average.
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Arnold conjecture (2005): There is a positive constant ca such

that

Ta(x) = (ca + o(1))
x

logx
.

Kurlberg & P (2010?): Arnold is almost right. Specifically,

assuming the GRH, there is a positive constant B, independent

of a, such that

Ta(x) =
x

logx
exp

(
(B + o(1)) log logx

log log logx

)
.
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Vladimir I. Arnold Pär Kurlberg
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Our final counting problem in this lecture has to do with fixed

points for discrete logarithms.

Given a prime p, must there be a generator g of (Z/pZ)∗ for

which there is some integer x ∈ [1, p− 1] with logg x = x? That

is, gx ≡ x (mod p). If so, say that p has property B.

For example, 23 ≡ 3 (mod 5), 32 ≡ 2 (mod 7), so that 5 and 7

have property B.

Brizolis (conjecture): Every prime p 6= 3 has property B.
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Lemma. The prime p has property B, if there is a generator x

for (Z/pZ)∗ that is in [1, p− 1] and is coprime to p− 1.

Proof. If such x exists, say xy ≡ 1 (mod p− 1) and let g = xy.

Then g is a generator for the group and gx = xxy ≡ x (mod p).

�
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Let’s make this a counting problem. Let N(p) denote the

number of generators x for (Z/pZ)∗ that are in [1, p− 1] and

coprime to p− 1.

What do we expect for N(p)? Well, there are exactly ϕ(p− 1)

generators in [1, p− 1] and exactly ϕ(p− 1) integers in this

range coprime to p− 1. If these are “independent events”, then

we would expect(
ϕ(p− 1)

p− 1

)2

(p− 1) =
ϕ(p− 1)2

p− 1

such numbers. Since ϕ(n) > cn/ log logn, the above expression

is at least of order p/(log log p)2, which is positive for all large

p. Thus, heuristically we have a formula that shows that the

Brizolis conjecture holds for all large primes p.
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How might we try and prove this?

A venerable tool in analytic number theory for counting is to

use characteristic functions.

Say f1(g) is 1 if gcd(g, p− 1) = 1 and 0 otherwise, and f2(g) is

1 if g is a generator for p and 0 otherwise.

Thus,

N(p) =
p−1∑
g=1

f1(g)f2(g).
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To use this, we need explicit representations for these

characteristic functions. Typically in analytic number theory we

express a characteristic function as a sum of better-understood

quantities, and then reverse the order of summation.

Being coprime to p− 1 is easy, it is essentially a combinatorial

inclusion-exclusion over common divisors of g and p− 1. We

have

f1(g) =
∑

d|gcd(g,p−1)

µ(d),

where µ is the Möbius function.
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Johann Peter Gustav Lejeune Dirichlet, quite the character . . .
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A combinatorially similar idea works for f2(g), the characteristic

function for generators for p, but here we need to introduce

characters. Let γ be some fixed generator for p and let

ζ = e2πi/(p−1), a primitive (p− 1)st root of 1 in C. There is a

natural isomophism χ from (Z/pZ)∗ to 〈ζ〉 where χ(γj) = ζj.

So, χ(g) = ζj if g = γj. Then

f2(g) =
∑

m|p−1

µ(m)

m

m∑
j=1

χ(g)j(p−1)/m.

This can be seen by noting that the inner sum is m if

g(p−1)/m ≡ 1 (mod p) and 0 otherwise.
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So,

N(p) =
p−1∑
g=1

∑
d|gcd(g,p−1)

µ(d)
∑

m|p−1

µ(m)

m

m∑
j=1

χ(g)j(p−1)/m.

Fine, but are we making any progress? It is perhaps natural to

write g = dh, use χ(g) = χ(d)χ(h) and rearrange a bit. We have

N(p) =
∑

d,m|p−1

µ(d)µ(m)

m

m∑
j=1

χ(d)j(p−1)/m
(p−1)/d∑
h=1

χ(h)j(p−1)/m.

Note that the terms in this triple sum with j = m are

∑
d,m|p−1

µ(d)µ(m)

m

p− 1

d
=
ϕ(p− 1)2

p− 1
.
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We have proved that∣∣∣∣∣N(p)−
ϕ(p− 1)2

p− 1

∣∣∣∣∣ ≤ ∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

∣∣∣∣∣∣∣
(p−1)/d∑
h=1

χ(h)j(p−1)/m

∣∣∣∣∣∣∣ .
Let

S
(
χj(p−1)/m

)
= max

n

∣∣∣∣∣∣
n∑

h=1

χ(h)j(p−1)/m

∣∣∣∣∣∣ ,
when 1 ≤ j ≤ m− 1. Thus,∣∣∣∣∣N(p)−

ϕ(p− 1)2

p− 1

∣∣∣∣∣ ≤ ∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

S
(
χj(p−1)/m

)
.
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George Pólya I. M. Vinogradov
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The Pólya–Vinogradov inequality

In 1918, Pólya and Vinogradov independently showed that for a

nonprincipal character ψ modulo q, we have

S(ψ) := max
n

∣∣∣∣∣∣
n∑

h=1

ψ(h)

∣∣∣∣∣∣ < cq1/2 log q,

for a universal positive constant c. Thus,

∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

S
(
χj(p−1)/m

)
= O(4ω(p−1)p1/2 log p),

where ω(n) is the number of distinct primes dividing n. Since

ω(n) = o(logn), we have the above expression being of

magnitude at most p1/2+ε.
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Thus,

N(p) =
ϕ(p− 1)2

p− 1
+O(p1/2+ε).

Since as we have seen, the main term is at least of order

p/(log log p)2, this shows that all sufficiently large primes p have

N(p) > 0.

But is it true for all primes p 6= 3?
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Questions like this pose a computational challenge, since it

involves putting explict constants on all of the inequalities

involved. And challenges can remain, since the point at which

N(p) > 0 is proved to be true may be too large to do a case

study up to that point.

Some history: W.-P. Zhang in 1995 gave essentially the above

argument but did not work out a starting point for when it is

true.

C. Cobelli and A. Zaharescu in 1999 gave a somewhat different

proof, showing that N(p) > 0 for all p > 102070. They said that

a reorganization of their estimates would likely support a bound

near 1050.
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So, can we do better? And how good is the Pólya–Vinogradov

inequality?

It’s easy to show via an averaging argument that for χ primitive,

S(χ) ≥
1

π

√
q.

So, apart from the “log q” factor, the Pólya–Vinogradov

inequality is best possible.

We have numerically explicit versions of the Pólya–Vinogradov

inequality with reasonable constants, but the Brizolis problem is

still difficult to handle completely.
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Levin, P, Soundararajan (2010): The Brizolis conjecture is true.

To prove this, we skewed the count for N(p). That is, we

considered

N∗(p) =
∑

g∈[1,p−1]
g is a generator

(g,p−1)=1

(
1−

∣∣∣∣∣ 2g

p− 1
− 1

∣∣∣∣∣
)
.

instead of

N(p) =
∑

g∈[1,p−1]
g is a generator

(g,p−1)=1

1.
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A “smoothed” Pólya–Vinogradov inequality:

Let SN(χ) = max
M

∣∣∣∣∣∣
∑

M≤a≤M+2N

χ(a)
(

1−
∣∣∣∣a−MN − 1

∣∣∣∣)
∣∣∣∣∣∣.

Levin, P, Soundararajan (2010): For χ primitive and N ≤ q,
we have SN(χ) ≤ √q −

N
√
q

.

The proof is based on Poisson summation and Gauss sums, and

is almost immediate. (A similar result for prime moduli is due

to Hua in 1942.)
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Mariana Levin K. Soundararajan
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The result is nearly best possible.

Treviño (2010): For χ primitive, max
N≤q

SN(χ) ≥
2

π2

√
q.

Actually, he has a slightly larger constant here, but he favors

this one, which has a neat proof. For the value of N that he

uses, which is near q/2, the upper bound in the LPS theorem is

a bit more than twice the Treviño lower bound.

Treviño is now looking at other numerical applications for the

smoothed Pólya–Vinogradov inequality.
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Enrique Treviño
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THANK YOU!
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