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Benkoski & Erdős: A positive integer n is weird if the sum of

the proper divisors of n exceeds n, yet no sub-sum of these

divisors hits n exactly.

They proved that a positive proportion of the natural numbers

are weird.
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Benkoski & Erdős: A positive integer n is weird if the sum of

the proper divisors of n exceeds n, yet no sub-sum of these

divisors hits n exactly.

They proved that a positive proportion of the natural numbers

are weird.

And what is the first weird number?
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Benkoski & Erdős: A positive integer n is weird if the sum of

the proper divisors of n exceeds n, yet no sub-sum of these

divisors hits n exactly.

They proved that a positive proportion of the natural numbers

are weird.

And what is the first weird number? It is 70.
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In 1770, Euler wrote:

“Mathematicians have tried in vain to discover some order in

the sequence of prime numbers, but we have every reason to

believe that there are some mysteries which the human mind

will never penetrate.”

from A. Granville, “Harald Cramér and the distribution of prime numbers”
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In 1770, Euler wrote:

“Mathematicians have tried in vain to discover some order in

the sequence of prime numbers, but we have every reason to

believe that there are some mysteries which the human mind

will never penetrate.”

Nevertheless, Euler proved in 1737 that the sum of the

reciprocals of the primes to x diverges to infinity like log logx.

So, 33 years before his pessimistic statement, he had a glimmer

that the mysterious primes might obey some statistical law.
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Less than 30 years after Euler opined on the mysteries of the

primes, Gauss, as a teenager, arrived at the conjecture that

the number of primes up to x is approximately∫ x
2

dt

log t
.

He wrote in 1849 in a letter to Encke:

“As a boy I considered the problem of how many primes there

are up to a given point. From my computations, I determined

that the density of primes near x is about 1/ logx.”

op. cit.
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Here are some notes in Gauss’s hand found in the Göttingen

library.

Yuri Tschinkel, courtesy of Brian Conrey
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This conjecture of Gauss may be viewed as saying it is

appropriate to study the primes statistically.

It led to the Riemann Hypothesis (1859). And to the prime

number theorem (Hadamard & de la Vallee Poussin in 1896,

Erdős & Selberg 1949).

More relevant to this talk, this statistical view of primes

morphed into a probabilistic view. In 1923, Hardy and

Littlewood conjectured that the density of twin primes near x

is given asymptotically by c/(logx)2. That is, p and p+ 2 are

“independent events” where the constant c ≈ 1.33 is a fudge

factor to take into account the degree to which they’re not

independent.
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Actually, in 1871, Sylvester came up with a similar heuristic
for the number of representations of an even number as a sum
of two primes (and so gave a heuristic for Goldbach’s
conjecture). Hardy and Littlewood returned to this in 1923,
but revised Sylvester’s constant. The Hardy–Littlewood
constant seems to be the “right” one (following both the
reasoning for the constant and numerical experiments).

In 1937, Cramér gave an explicitly probabilistic heuristic (citing
the Borel–Cantelli lemma), that the length of the maximal gap
between consecutive primes in [1, x] is ∼ (logx)2. (In 1995,
Granville revised Cramér’s heuristic to take into account
certain conspiracies that can deterministically occur among
numbers divisible by a small prime, to get that the maximal
prime gap is heuristically ∼ c(logx)2, where c is perhaps
2e−γ ≈ 1.229.)
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Also, the statistical/probabilistic view moved on beyond the

primes themselves.

In 1917, Hardy and Ramanujan proved that the “normal”

number of prime factors of an integer near x is log logx. (This

means that for each fixed ε > 0, the asymptotic density of the

integers n with between (1− ε) log logn and (1 + ε) log logn

prime factors is 1.) Though clearly a statistical result, the

proof was not.

In 1934, Turán gave a new and simple proof of the

Hardy–Ramanujan theorem, that was based on the

second-moment method in probability, but he didn’t realize

that that is what he had done!
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“When writing Hardy first in 1934 on my proof of the

Hardy–Ramanujan theorem, I did not know what Chebyshev’s

inequality was and a fortiori on the central limit theorem.

Erdős, to my best knowledge, was at that time not aware too.

It was Mark Kac who wrote to me a few years later that he

discovered when reading my proof in J. LMS that this is

basically probability and so was his interest turned to this

subject.”

Letter of Paul Turán to Peter Elliott in 1976, quoted in Elliott’s

“Probabilistic number theory, vol. II”
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The distribution of “abundant” numbers (a topic going back to
antiquity) was worked out in the 1920s and 1930s by
Schoenberg, Davenport and others, culminating in the
Erdős–Wintner theorem in 1939.

Also that year, we had the celebrated Erdős–Kac theorem on
the Gaussian distribution of the number of prime factors of a
number.

So was born “probabilistic number theory”, a vital part of
analytic number theory.

But what of the “probabilistic method”, where one proves the
existence of various strange things by showing that with a
suitable probability distribution, there is a positive chance that
they exist?
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In 1931, Sidon wondered how dense a set of positive integers
can be if no number has more than 1 intrinsic representation as
a sum of two members of the set. (That is, a+ b = n is
considered as the same representation of n as b+ a.) And what
is the slowest growing function f(n) for a set where every
number has at least one representation as a sum of two
members, but not more than f(n) representations?

These problems became the subject of much research over the
next 30 years, and some of the best theorems were proved via
the probabilistic method:

Erdős (1954): One can take f(n) as c logn for some c.

Erdős (1956): There’s a set where every number n has
between c1 logn and c2 logn representations as a sum of two
elements.
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Still unsolved: Is there a set and a constant c > 0 such that

every number n has ∼ c logn representations as a sum of two

members of the set, as n→∞?

In Sidon’s original problem, he wondered about having at most

one intrinsic representation. Erdős and Rényi, using the

probabilistic method in 1960, showed that there is a fairly

dense set where every number has a bounded number of

representations as a sum of two members.

In any event, the probabilistic method felt at home in number

theory right from the very beginning!
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Let us shift gears to the computer age. If p is an odd prime,
the function x2 mod p is 2 : 1 for nonzero residues x, so there
are exactly 1

2(p− 1) nonzero squares mod p and exactly 1
2(p− 1)

non-squares mod p. Consider the algorithmic problem of
finding one of these non-squares.

For example, for p = 3, 2 is a non-square. In fact, 2 works as a
non-square for “half” of the primes, namely those that are 3 or
5 mod 8. For the prime 7, 3 is a non-square, and 3 works for
the primes that are 5 or 7 mod 12. And so on.

This seems painfully easy! But in fact, we do not have a
deterministic polynomial time algorithm that produces a
non-square for a given input prime p. (Assuming a generalized
form of the Riemann Hypothesis allows us to prove that a
certain simple algorithm runs in polynomial time.)
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But in practice, no one is concerned with this, because we have

a wonderful random algorithm that produces a non-square

mod p. Namely, choose a random residue r mod p and check to

see if it is a square or a non-square mod p (there is a simple

polynomial-time check). The probability of success is 1
2, and so

the expected number of trials for success is 2.

This simple example is in fact closely tied to the fundamental

problems of factoring polynomials over a finite field, and to

primality testing.
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For primality testing, we’ve long known of simple random

algorithms that will quickly recognize composite numbers,

leading us to strong conjectures that those not revealed as

composite are prime. It was only recently that a polynomial

time primality test was found (Agrawal, Kayal, Saxena), but

it’s not so computer practical, and the random tests remain as

the best choice for practical purposes.

19



We also use probabilistic reasoning to construct deterministic

algorithms.

An example is the quadratic sieve factoring algorithm that I

found in the early 1980s. The method is almost completely

heuristic, assuming numbers produced by a particular quadratic

polynomial behave like random numbers of similar size.

(Shhh... No one should tell the large composites about this,

they don’t know we haven’t rigorously proved that the

quadratic sieve works, they get factored anyway!)
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In fact, this state of affairs is largely true for all practical

factoring algorithms, from the Pollard rho method, to the

elliptic curve method, and the number field sieve. The elliptic

curve method explicitly exploits randomness, but is still a

heuristic method. The other algorithms, like the quadratic

sieve, are deterministic, but with heuristic, probabilistic

analyses.
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So far we have considered the distribution of the primes,

probabilistic number theory, the probabilistic method in number

theory, and the role of randomness in number theoretic

algorithms.

Let me conclude with an idiosyncratic problem, one that Erdős

once proclaimed as perhaps his favorite.

A finite set of integer residue classes is said to form a covering,

if the union of the residue classes contains every integer.

Two simple examples: 0 mod 1;

0 mod 2, 1 mod 2
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To make this nontrivial, let’s rule out the modulus 1, and let’s

also rule out repeated moduli.

A rule-abiding example:

0 mod 2, 0 mod 3, 1 mod 4, 1 mod 6, 11 mod 12

One can see this works by viewing each as 1 or more classes

mod 12. Then 0 mod 2 hits the 6 even classes, 0 mod 3 hits 3

and 9, 1 mod 4 hits 1 and 5, 1 mod 6 hits 7, and 11 mod 12

hits 11.
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Erdős conjectured in 1950 that there are coverings with

distinct moduli where the least modulus is arbitrarily large.

The current record is held by Nielsen (2009) who found a

covering with least modulus 40. The moduli only involve the

primes to 107, but it has more than 1050 of them!

This is nice, but where’s the probability?
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Let’s consider a simple fact. If the moduli used are distinct

primes, then they cannot cover, no matter what is chosen as

representatives for the residue classes. Why?

Say the moduli are p1, p2, . . . , pk, where these are distinct

primes. Being in some residue class modulo one of these primes

is an independent event from being in a class for another of

them. In fact, the asymptotic density of the integers not

covered will be exactly

k∏
i=1

(
1−

1

pi

)
,

which can be arbitrarily close to 0, but cannot be 0.
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The exact same argument holds if the moduli m1,m2, . . . ,mk

are merely pairwise coprime.

So the Erdős covering problem is very much one of extremal

cases of dependent probabilities!

Some years ago I wondered what the maximal density one can

cover using all of the integers in (x,2x] as moduli. Would it be

about ∑
m∈(x,2x]

1

m
∼ log 2 or

∏
m∈(x,2x]

(
1−

1

m

)
∼

1

2

or somewhere in between?
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Over some years a paper slowly developed of Filaseta, Ford,

Konyagin, P, & Yu (2007). We proved among many other

things that the moduli between x and 2x behave asymptotically

as if they’re independent, that is, one cannot remove more

than 1
2 + o(1) of the integers with them.

Our proof used a lemma that the referee pointed out to us

resembles the Lovász local lemma. I was quite embarrassed

since I first learned of the local lemma some years earlier

attending Joel’s “Ten Lectures”.
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I was embarrassed again when at the Erdős centennial

conference, Hough announced his disproof of the Erdős

covering conjecture! There is a number B such that any

covering with distinct moduli must use a modulus at most B.

We don’t know what B is, but at least we know that B ≥ 40.

And Hough’s proof used our version of the local lemma in a

strong way.
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There are many more links of number theory to probability, and

I haven’t even mentioned random number generators. Well,

perhaps another time.

Happy Birthday Joel!
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