The ranges of various familiar functions

Carl Pomerance, Dartmouth College

based on joint work with

K. Ford, F. Luca, and P. Pollack

Let us introduce our cast of characters:

- Euler's function: $\varphi(n)$ is the cardinality of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- Carmichael's function: $\lambda(n)$ is the exponent of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- σ : the sum-of-divisors function.
- $s(n) = \sigma(n) n$: the sum-of-proper-divisors function.

The oldest of these functions is $s(n) = \sigma(n) - n$, going back to Pythagoras. He was interested in fixed points (s(n) = n) and 2-cycles (s(n) = m, s(m) = n) in the dynamical system given by iterating s.

Very little is known after millennia of study, but we do know that the number of n to x with s(n) = n is at most x^{ϵ} (Hornfeck & Wirsing, 1957) and that the number of n to x with n in a 2-cycle is at most $x/\exp((\log x)^{1/2})$ for x large (P, 2014).

The study of the comparison of s(n) to n led to the theorems of Schoenberg, Davenport, and Erdős & Wintner.

Erdős was the first to consider the set of values of s(n). Note that if $p \neq q$ are primes, then s(pq) = p + q + 1, so that:

All even integers at least 8 are the sum of 2 unequal primes,

All odd numbers at least 9 are values of s.

Also, s(2) = 1, s(4) = 3, and s(8) = 7, so presumably the only odd number that's not an s-value is 5. It's known that this slightly stronger form of Goldbach is almost true in that the set of evens not so representable as p + q has density 0.

Thus: the image of s contains almost all odd numbers.

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even numbers in [1,x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form s(n).

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even numbers in [1,x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form s(n).

Unsolved: Does the image of s have an asymptotic density? Does the image of s contain a positive proportion of even numbers?

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even numbers in [1,x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form s(n).

Unsolved: Does the image of s have an asymptotic density? Does the image of s contain a positive proportion of even numbers?

Late breaking news: Yes to the second question. (Luca & P, 2014)

The set of values of φ was first considered by Pillai (1929): The number $V_{\varphi}(x)$ of φ -values in [1,x] is $O(x/(\log x)^c)$, where $c=\frac{1}{e}\log 2=0.254\ldots$.

Pillai's idea: There are not many values $\varphi(n)$ when n has few prime factors, and if n has more than a few prime factors, then $\varphi(n)$ is divisible by a high power of 2.

The set of values of φ was first considered by Pillai (1929): The number $V_{\varphi}(x)$ of φ -values in [1,x] is $O(x/(\log x)^c)$, where $c=\frac{1}{e}\log 2=0.254\ldots$.

Pillai's idea: There are not many values $\varphi(n)$ when n has few prime factors, and if n has more than a few prime factors, then $\varphi(n)$ is divisible by a high power of 2.

Erdős (1935):
$$V_{\varphi}(x) = x/(\log x)^{1+o(1)}$$
.

Erdős's idea: Deal with $\Omega(\varphi(n))$ (the total number of prime factors of $\varphi(n)$, with multiplicity). This paper was seminal for the various ideas introduced. For example, the proof of the infinitude of Carmichael numbers owes much to this paper.

Again: $V_{\varphi}(x) = x/(\log x)^{1+o(1)}$.

But: A great deal of info may be lurking in that "o(1)".

After work of Erdős & Hall, Maier & P, and Ford, we now know that $V_{\varphi}(x)$ is of magnitude

$$\frac{x}{\log x} \exp\left(A(\log_3 x - \log_4 x)^2 + B\log_3 x + C\log_4 x\right),\,$$

where \log_k is the k-fold iterated \log , and A,B,C are explicit constants.

Unsolved: Is there an asymptotic formula for $V_{\varphi}(x)$? Do we have $V_{\varphi}(2x) \sim 2V_{\varphi}(x)$?

The same results and unsolved problems pertain as well for the image of σ .

In 1959, Erdős conjectured that the image of σ and the image of φ has an infinite intersection; that is, there are infinitely many pairs m,n with

$$\sigma(m) = \varphi(n).$$

It is amazing how many famous conjectures imply that the answer is yes!

Yes, if there are infinitely many twin primes:

If
$$p$$
, $p+2$ are both prime, then
$$\varphi(p+2)=p+1=\sigma(p).$$

Yes, if there are infinitely many twin primes:

If
$$p$$
, $p+2$ are both prime, then
$$\varphi(p+2)=p+1=\sigma(p).$$

Yes, if there are infinitely many Mersenne primes:

If
$$2^p-1$$
 is prime, then
$$\varphi(2^{p+1})=2^p=\sigma(2^p-1).$$

Yes, if there are infinitely many twin primes:

If
$$p$$
, $p+2$ are both prime, then
$$\varphi(p+2)=p+1=\sigma(p).$$

Yes, if there are infinitely many Mersenne primes:

If
$$2^p-1$$
 is prime, then
$$\varphi(2^{p+1})=2^p=\sigma(2^p-1).$$

Yes, if the Extended Riemann Hypothesis holds.

It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some amazing and unexpected corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely many solutions to $\sigma(m) = \varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: If there are infinitely many Siegel zeros, then there are infinitely many twin primes.

Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi,\sigma}(x)$ of common values of φ and σ in [1,x] exceeds $\exp((\log \log x)^a)$ for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi,\sigma}(x) = x/(\log x)^{1+o(1)}$.

Ford & Pollack (2012): Most values of φ are not values of σ and vice versa.

The situation for Carmichael's function λ has only recently become clearer. Recall that $\lambda(p^a) = \varphi(p^a)$ unless $p = 2, a \geq 3$, when $\lambda(2^a) = 2^{a-2}$, and that

$$\lambda([m,n]) = [\lambda(m), \lambda(n)].$$

It is easy to see that the image of φ has density 0, just playing with powers of 2 as did Pillai. But what can be done with λ ? It's not even obvious that λ -values that are 2 mod 4 have density 0.

The solution lies in the "anatomy of integers" and in particular of shifted primes. It is known (Erdős & Wagstaff) that most numbers do not have a large divisor of the form p-1 with p prime. But a λ -value has such a large divisor or it is "smooth", so in either case, there are not many of them.

Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ -values in [1,x], is $O(x/(\log x)^c)$.

Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ -values in [1,x], is $O(x/(\log x)^c)$.

Friedlander & Luca (2007): A valid choice for c is $1 - \frac{e}{2} \log 2 = 0.057...$

Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ -values in [1,x], is $O(x/(\log x)^c)$.

Friedlander & Luca (2007): A valid choice for c is $1 - \frac{e}{2} \log 2 = 0.057...$

Banks, Friedlander, Luca, Pappalardi, & Shparlinski (2006): $V_{\lambda}(x) \geq \frac{x}{\log x} \exp\left((A + o(1))(\log_3 x)^2\right)$.

So, $V_{\lambda}(x)$ is somewhere between $x/(\log x)^{1+o(1)}$ and $x/(\log x)^c$, where $c=1-\frac{e}{2}\log 2$.

Recently, Luca & P (2013): $V_{\lambda}(x) \leq x/(\log x)^{\eta+o(1)}$, where $\eta = 1 - (1 + \log \log 2)/\log 2 = 0.086...$. Further, $V_{\lambda}(x) \geq x/(\log x)^{0.36}$ for all large x.

Late breaking news: The "correct" exponent is η (Ford, Luca, & P, 2014).

The constant η actually pops up in some other problems:

Erdős (1960): The number of distinct entries in the $N \times N$ multiplication table is $N^2/(\log N)^{\eta+o(1)}$.

The asymptotic density of integers with a divisor in the interval [N,2N] is $1/(\log N)^{\eta+o(1)}$. This result has its own history beginning with Besicovitch in 1934, some of the other players being Erdős, Hooley, Tenenbaum, and Ford.

Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \le x$ with $\varphi(n)$ a square. The same goes for σ and λ .

Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \le x$ with $\varphi(n)$ a square. The same goes for σ and λ .

Remark. There are only $x^{0.5}$ squares below x. (!)

Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \le x$ with $\varphi(n)$ a square. The same goes for σ and λ .

Remark. There are only $x^{0.5}$ squares below x. (!)

Might there be a positive proportion of integers n with n^2 a value of φ ?

Pollack & P (2013): No, the number of $n \le x$ with n^2 a φ -value is $O(x/(\log x)^{0.0063})$. The same goes for σ .

Unsolved: Could possibly almost all even squares be λ -values??

Idea of the proof that a positive proportion of even numbers are values of $s(n) = \sigma(n) - n$ (Luca & P, 2014):

Consider even numbers n with several constraints:

- n is deficient (means that s(n) < n);
- $n = pqrk \in [\frac{1}{2}x, x]$ with p > q > r > k and p, q, r primes;
- $k \le x^{1/60}$, $r \in [x^{1/15}, x^{1/12}]$, $q \in [x^{7/20}, x^{11/30}]$;
- \bullet *n* is "normal".

If n satisfies these conditions, then $s(n) \leq x$ is even.

Let r(s) denote the number of representations of s as s(n) from such numbers n.

We have $\sum_{s} r(s) \gg x$.

The trick then is to show that $\sum_{s} r(s)^2 \ll x$.

For this, the sieve is useful. Stay tuned for details on my home page.

What's next with s(n)?

Possibly a conjecture of Erdős, Granville, P, & Spiro (1990) is now tractable:

If A is a set of density 0, then $s^{-1}(A)$ has density 0.

The same conjecture should hold for the function $s_{\varphi}(n) := n - \varphi(n)$.

(Our proof that the range of s contains a positive proportion of evens, shows this as well for the range of s_{φ} , a fact not previously known.)

MERCI & THANK YOU