The ranges of various familiar functions

Carl Pomerance, Dartmouth College

based on joint work with
K. Ford, F. Luca, and P. Pollack
Let us introduce our cast of characters:

- **Euler**’s function: \(\varphi(n) \) is the cardinality of \((\mathbb{Z}/n\mathbb{Z})^\times \).

- **Carmichael**’s function: \(\lambda(n) \) is the exponent of \((\mathbb{Z}/n\mathbb{Z})^\times \).

- \(\sigma \): the sum-of-divisors function.

- \(s(n) = \sigma(n) - n \): the sum-of-proper-divisors function.
The oldest of these functions is $s(n) = \sigma(n) - n$, going back to Pythagoras. He was interested in fixed points ($s(n) = n$) and 2-cycles ($s(n) = m$, $s(m) = n$) in the dynamical system given by iterating s.

Very little is known after millennia of study, but we do know that the number of n to x with $s(n) = n$ is at most x^ϵ (Hornfeck & Wirsing, 1957) and that the number of n to x with n in a 2-cycle is at most $x/\exp((\log x)^{1/2})$ for x large (P, 2014).

The study of the comparison of $s(n)$ to n led to the theorems of Schoenberg, Davenport, and Erdős & Wintner.
Erdős was the first to consider the set of values of \(s(n) \). Note that if \(p \neq q \) are primes, then \(s(pq) = p + q + 1 \), so that:

\[
\text{All even integers at least 8 are the sum of 2 unequal primes,}
\]

\[
\implies
\]

\[
\text{All odd numbers at least 9 are values of } s.
\]

Also, \(s(2) = 1 \), \(s(4) = 3 \), and \(s(8) = 7 \), so presumably the only odd number that’s not an \(s \)-value is 5. It’s known that this slightly stronger form of Goldbach is almost true in that the set of evens not so representable as \(p + q \) has density 0.

Thus: \textit{the image of } s \textit{ contains almost all odd numbers.}
But what of even numbers? Erdős (1973): \textit{There is a positive proportion of even numbers missing from the image of }s.
But what of even numbers? Erdős (1973): *There is a positive proportion of even numbers missing from the image of s.*

Y.-G. Chen & Q.-Q. Zhao (2011): *At least $(0.06 + o(1))x$ even numbers in $[1, x]$ are not of the form $s(n)$.*

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form $s(n)$.
But what of even numbers? Erdős (1973): There is a positive proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least $(0.06 + o(1))x$ even numbers in $[1, x]$ are not of the form $s(n)$.

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form $s(n)$.

Unsolved: Does the image of s have an asymptotic density? Does the image of s contain a positive proportion of even numbers?
But what of even numbers? Erdős (1973): *There is a positive proportion of even numbers missing from the image of* s.

Y.-G. Chen & Q.-Q. Zhao (2011): *At least* $(0.06 + o(1))x$ *even numbers in* $[1, x]$ *are not of the form* $s(n)$.

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ even numbers to x are not of the form $s(n)$.

Unsolved: Does the image of s have an asymptotic density? Does the image of s contain a positive proportion of even numbers?

Late breaking news: Yes to the second question. (Luca & P, 2014)
The set of values of φ was first considered by Pillai (1929):

The number $V_{\varphi}(x)$ of φ-values in $[1, x]$ is $O(x/(\log x)^c)$, where $c = \frac{1}{e} \log 2 = 0.254 \ldots$.

Pillai’s idea: There are not many values $\varphi(n)$ when n has few prime factors, and if n has more than a few prime factors, then $\varphi(n)$ is divisible by a high power of 2.
The set of values of φ was first considered by Pillai (1929): The number $V_\varphi(x)$ of φ-values in $[1, x]$ is $O(x/(\log x)^c)$, where $c = \frac{1}{e} \log 2 = 0.254 \ldots$.

Pillai’s idea: There are not many values $\varphi(n)$ when n has few prime factors, and if n has more than a few prime factors, then $\varphi(n)$ is divisible by a high power of 2.

Erdős (1935): $V_\varphi(x) = x/(\log x)^{1+o(1)}$.

Erdős’s idea: Deal with $\Omega(\varphi(n))$ (the total number of prime factors of $\varphi(n)$, with multiplicity). This paper was seminal for the various ideas introduced. For example, the proof of the infinitude of Carmichael numbers owes much to this paper.
Again: $V_{\varphi}(x) = x/(\log x)^{1+o(1)}$.

But: A great deal of info may be lurking in that “$o(1)$”.

After work of Erdős & Hall, Maier & P, and Ford, we now know that $V_{\varphi}(x)$ is of magnitude

$$\frac{x}{\log x} \exp \left(A(\log_3 x - \log_4 x)^2 + B \log_3 x + C \log_4 x \right),$$

where \log_k is the k-fold iterated log, and A, B, C are explicit constants.

Unsolved: Is there an asymptotic formula for $V_{\varphi}(x)$?
Do we have $V_{\varphi}(2x) \sim 2V_{\varphi}(x)$?
The same results and unsolved problems pertain as well for the image of σ.

In 1959, Erdős conjectured that the image of σ and the image of φ has an infinite intersection; that is, there are infinitely many pairs m, n with

$$\sigma(m) = \varphi(n).$$

It is amazing how many famous conjectures imply that the answer is yes!
Yes, if there are infinitely many twin primes:

If $p, p + 2$ are both prime, then

$$\varphi(p + 2) = p + 1 = \sigma(p).$$
Yes, if there are infinitely many twin primes:

If \(p, p + 2 \) are both prime, then
\[
\varphi(p + 2) = p + 1 = \sigma(p).
\]

Yes, if there are infinitely many Mersenne primes:

If \(2^p - 1 \) is prime, then
\[
\varphi(2^{p+1}) = 2^p = \sigma(2^p - 1).
\]
Yes, if there are infinitely many twin primes:

If $p, p + 2$ are both prime, then

$$\varphi(p + 2) = p + 1 = \sigma(p).$$

Yes, if there are infinitely many Mersenne primes:

If $2^p - 1$ is prime, then

$$\varphi(2^{p+1}) = 2^p = \sigma(2^p - 1).$$

Yes, if the Extended Riemann Hypothesis holds.
It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some amazing and unexpected corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely many solutions to $\sigma(m) = \varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: If there are infinitely many Siegel zeros, then there are infinitely many twin primes.
Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi,\sigma}(x)$ of common values of φ and σ in $[1, x]$ exceeds $\exp((\log \log x)^a)$ for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi,\sigma}(x) = x/(\log x)^{1+o(1)}$.

Ford & Pollack (2012): Most values of φ are not values of σ and vice versa.
The situation for Carmichael’s function λ has only recently become clearer. Recall that $\lambda(p^a) = \varphi(p^a)$ unless $p = 2, a \geq 3$, when $\lambda(2^a) = 2^{a-2}$, and that

$$\lambda([m, n]) = [\lambda(m), \lambda(n)].$$

It is easy to see that the image of φ has density 0, just playing with powers of 2 as did Pillai. But what can be done with λ? It’s not even obvious that λ-values that are 2 mod 4 have density 0.

The solution lies in the “anatomy of integers” and in particular of shifted primes. It is known (Erdős & Wagstaff) that most numbers do not have a large divisor of the form $p - 1$ with p prime. But a λ-value has such a large divisor or it is “smooth”, so in either case, there are not many of them.
Using these thoughts, Erdős, P, & Schmutz (1991): *There is a positive constant c such that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $O(x/(\log x)^c)$.*
Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $O(x/(\log x)^c)$.

Friedlander & Luca (2007): A valid choice for c is $1 - \frac{e}{2} \log 2 = 0.057\ldots$.
Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant \(c \) such that \(V_\lambda(x) \), the number of \(\lambda \)-values in \([1, x]\), is \(O(x/(\log x)^c) \).

Friedlander & Luca (2007): A valid choice for \(c \) is
\[
1 - \frac{e}{2} \log 2 = 0.057 \ldots
\]

Banks, Friedlander, Luca, Pappalardi, & Shparlinski (2006):
\[
V_\lambda(x) \geq \frac{x}{\log x} \exp \left((A + o(1))(\log_3 x)^2 \right).
\]

So, \(V_\lambda(x) \) is somewhere between \(x/(\log x)^{1+o(1)} \) and \(x/(\log x)^c \), where \(c = 1 - \frac{e}{2} \log 2 \).
Recently, Luca & P (2013): $V_\lambda(x) \leq x/(\log x)^{\eta+o(1)}$, where
$\eta = 1 - (1 + \log \log 2)/\log 2 = 0.086\ldots$.
Further, $V_\lambda(x) \geq x/(\log x)^{0.36}$ for all large x.

Late breaking news: The “correct” exponent is η (Ford, Luca, & P, 2014).

The constant η actually pops up in some other problems:

Erdős (1960): The number of distinct entries in the $N \times N$
multiplication table is $N^2/(\log N)^{\eta+o(1)}$.

The asymptotic density of integers with a divisor in the interval
$[N, 2N]$ is $1/(\log N)^{\eta+o(1)}$. This result has its own history
beginning with Besicovitch in 1934, some of the other players
being Erdős, Hooley, Tenenbaum, and Ford.
Square values Banks, Friedlander, P, & Shparlinski (2004):
There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.
Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Remark. There are only $x^{0.5}$ squares below x. (!)
Square values Banks, Friedlander, P, & Shparlinski (2004):
There are more than $x^{0.7}$ *integers* $n \leq x$ *with* $\varphi(n)$ *a square.*
The same goes for σ *and* λ.

Remark. There are only $x^{0.5}$ squares below x. (!)

Might there be a positive proportion of integers n with n^2 a value of φ?

Pollack & P (2013): No, the number of $n \leq x$ with n^2 a φ-value is $O(x/(\log x)^{0.0063})$. The same goes for σ.

Unsolved: Could possibly almost all even squares be λ-values??
Idea of the proof that a positive proportion of even numbers are values of \(s(n) = \sigma(n) - n \) (Luca & P, 2014):

Consider even numbers \(n \) with several constraints:

- \(n \) is deficient (means that \(s(n) < n \));
- \(n = pqrk \in [\frac{1}{2}x, x] \) with \(p > q > r > k \) and \(p, q, r \) primes;
- \(k \leq x^{1/60}, \quad r \in [x^{1/15}, x^{1/12}], \quad q \in [x^{7/20}, x^{11/30}] \);
- \(n \) is “normal”.

If n satisfies these conditions, then $s(n) \leq x$ is even.

Let $r(s)$ denote the number of representations of s as $s(n)$ from such numbers n.

We have $\sum_s r(s) \gg x$.

The trick then is to show that $\sum_s r(s)^2 \ll x$.

For this, the sieve is useful. Stay tuned for details on my home page.
What’s next with $s(n)$?

Possibly a conjecture of Erdős, Granville, P, & Spiro (1990) is now tractable:

If A is a set of density 0, then $s^{-1}(A)$ has density 0.

The same conjecture should hold for the function

$s_{\varphi}(n) := n - \varphi(n).$

(Our proof that the range of s contains a positive proportion of evens, shows this as well for the range of s_{φ}, a fact not previously known.)
MERCI & THANK YOU