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Abstract

Earlier this year, the first and third authors showed that there are at most xo(1)

numbers n ≤ x which violate Robin’s inequality: σ(n)/n < eγ log log n. Unfortu-
nately, the proof contains an oversight. This could be corrected and the theorem
strengthened to give the bound xO(1/ log log x) along the lines of the original argu-
ment. Instead, we give a short proof of this more explicit bound using a result of
the second author from 1985.

1. Introduction

Robin [6] (also see Ramanujan [5]) conjectured that σ(n) < eγn log log n holds for

all positive integers n > 7!, where σ(n) is the sum of divisors of n. And he proved

that the validity of this inequality is equivalent to the Riemann Hypothesis. In the

recent paper [3], the first and third authors let

NR(x) := {7! < n ≤ x : σ(n) ≥ eγn log log n}

and proved various inequalities for #NR(x). In particular, Theorem 3 in [3] claims

that #NR(x) ≤ xo(1) holds as x → ∞. Unfortunately, that proof contains an

oversight which we correct here. In addition, we make the o(1) from the exponent

explicit. It is possible to give a proof along the lines of [3] but here we give a much

shorter proof using the second author’s paper [4].
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2. Main result

We have the following theorem.

Theorem 1. For x > 7! we have

#NR(x) = xO(1/ log log x).

Let p1, p2, . . . denote the sequence of prime numbers. As usual, we let ω(n)

denote the number of primes among the divisors of n, and we let logj denote the

j-times iterated log function. Let

y = y(x) = log x/ log2 x.

It is well-known that the maximal order of ω(n) for n ≤ x is ∼ y (see, for example,

Section 5 of Ramanujan’s paper [5]). We first show that this maximal order is

exceeded by members of NR(x).

Lemma 1. For x sufficiently large and n ∈ (x/2, x] ∩NR(x), we have ω(n) > y.

Proof. Suppose that n ∈ (x/2, x] and ω(n) = k ≤ y. Then

σ(n)

n
<
∏
p|n

(
1− 1

p

)−1
≤
∏
j≤k

(
1− 1

pj

)−1
. (1)

By a strong form of Mertens’ theorem (cf. [7]), we have∏
j≤k

(
1− 1

pj

)−1
= eγ log pk +O

( 1

(log pk)2

)
. (2)

We now estimate log pk. By a result of Cipolla [1], the prime number theorem with

a modest error term implies that

pk = k
(

log k + log2 k − 1 +O
( log2 k

log k

))
. (3)

Note that

log k ≤ log y = log2 x− log3 x.

Then log2 k ≤ log3 x, so that

log k + log2 k ≤ log2 x.

From n ∈ (x/2, x] ∩ NR(x), (1), (2), and (3), we have log k � log2 x, so that

the error term in (3) can be replaced with O(log3 x/ log2 x). Taking the log of the
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equation in (3) and using the above inequalities we thus get

log pk = log k + log
(

log k + log2 k − 1 +O
( log2 k

log k

))
≤ log2 x− log3 x+ log

(
log2 x− 1 +O

( log3 x

log2 x

))
= log2 x−

1

log2 x
+O

( log3 x

(log2 x)2

)
.

Using this with (1) and (2) we get

σ(n)

n
≤ eγ log2 x−

eγ

log2 x
+O

( log3 x

(log2 x)2

)
.

Since log2 x − log2(x/2) � 1/ log x this contradicts n ∈ NR(x) for x large. This

completes the proof.

We now prove the theorem. By [4, Theorem 6.1], for k ≥ y we have∑
n≤x

ω(n)=k

1 ≤ eO(y),

uniformly. But since y is the maximal order of ω(n) for n ≤ x, we have ω(n) ≤ 2y

for n ≤ x and x large. Thus, ∑
n≤x

ω(n)>y

1 ≤ yeO(y) = eO(y).

The lemma then gives the theorem.

3. Conclusion and open problems

It is interesting to consider the set S(x) of numbers n ≤ x with ω(n) > y. In the

lemma we showed that (x/2, x] ∩ NR(x) ⊂ S(x), and in the proof of the theorem,

we showed that #S(x) ≤ eO(y). How good is this estimate? A lower bound for

#S(x) can be found by letting n denote the product of the first byc + 1 primes

and then noting that ω(jn) > y for every integer j. So, #S(x) ≥ bx/nc. A simple

calculation not dissimilar from the above shows this quantity is e(1+o(1))y as x→∞.

An additional remark is that with slightly more effort a stronger lemma can be

proved showing that if ω(n) ≤ y + y/ log2 x and n ∈ (x/2, x], then n /∈ NR(x).

Presumably there are not many values of n ≤ x with ω(n) > y+ y/ log2 x, and this

may be a profitable line of attack to improve our theorem.
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Let Hn denote the nth harmonic number, the reciprocal sum of the integers up

to n. In [2] Lagarias leverages Robin’s paper to prove that the Riemann Hypothesis

is equivalent to the inequality σ(n) ≤ Hn + exp(Hn) log(Hn) for all n. Since Hn =

log n+ γ +O(1/n), we have

exp(Hn) log(Hn) = eγn log log n+ (γeγ + o(1))n/ log n.

Thus, if n violates the Lagarias inequality, then

σ(n) > eγn log log n+ something positive.

So there are nominally fewer n’s violating the Lagarias inequality than the Robin

inequality; that is, our theorem pertains to exceptions to the Lagarias inequality.

These thoughts also invite a possible improvement if one just aims to study excep-

tions to the Lagarias inequality.
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de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.

[7] A. I. Vinogradov, On the remainder in Mertens’ formula. (Russian), Dokl.

Akad. Nauk. SSSR 148 (1963), 262–263.


