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This edition of the West Coast Number Theory Conference is

dedicated to the memory of long-time attendee,

John Brillhart, 1930–2022.

I have many memories of John, some good, some difficult, but

I am sad that he is no longer with us. In checking the Internet

for photos of John, it seems strange that there are not very

many of them, given his prominence. I did find this one.
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Oxford Number Theory Conference, 1969
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Most numbers n have a fairly large prime factor, say > nε, and

most have a fairly small prime factor, say < 1/ε.

At one extreme we have the smooth (or friable) numbers with

no large prime factors. And at the other extreme we have the

rough (maybe anti-friable?) numbers with no small prime

factors.

Smooth numbers are useful in the analysis of various factoring

and discrete log algorithms, such as the Brillhart–Morrison

continued fraction factoring algorithm.

Rough numbers have been viewed algorithmically as the

uncanceled numbers in the sieve of Eratosthenes.
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This talk discusses the distribution of rough numbers. In

particular, let Φ(x,y) denote the number of integers n ≤ x with

no prime factors ≤ y.

For example, Φ(10,2) = 5, since it is precisely the odd numbers

that have no prime factors ≤ 2. And

Φ(100,10) = 22,

since after removing numbers with a prime factor ≤ 10 from

[1,100], what is left is 1 and the 21 primes in (10,100].
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For y fixed and x→∞, inclusion–exclusion allows us to get an

asymptotic formula:

Φ(x,y) = ∑
P (d)≤y

µ(d) ⌊x
d
⌋ ∼ x∏

p≤y
(1 − 1

p
) , x→∞,

where P (d) is the largest prime factor of d and p runs over

primes. But what if y is not fixed?

Using a well-known theorem of Mertens we have

∏
p≤y

(1 − 1

p
) ∼ e−γ

logy
, y →∞,

where γ is Euler’s constant (e−γ ≈ .561).

Can we put both asymptotics together?
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Let’s try it when y = √
x. Might we have

Φ(x,
√
x) ∼ x ∏

p≤√x
(1 − 1

p
) ∼ e−γx

log(√x), x→∞?

Well, the left side is π(x) − π(√x) + 1 ∼ x/ logx by the Prime

Number Theorem. And the right side is (2e−γ)x/ logx, and

2e−γ ≈ 1.123, so no, this is not correct.

There is a bit of a mystery here. When does the simple sieve

given by inclusion-exclusion fade away to something deeper

with the distribution of primes?
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Prominent here is the theorem of Buchstab:

Φ(x,y) ∼ ω(u)x/ logy, x ≥ y →∞.

Here u = logx/ logy and ω(u) is the Buchstab function. Like the

Dickman–de Bruijn ρ-function, ω is defined via a differential

delay equation:

uω(u) = 1, 1 ≤ u ≤ 2,

(uω(u))′ = ω(u − 1), u > 2,

with ω continuous.

One can show that 1/2 ≤ ω(u) ≤ 1 for all u ≥ 1 and that

ω(u) → e−γ ≈ .561 as u→∞.
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The Buchstab function, 1 ≤ u ≤ 4, (from Wikipedia)

9



It’s difficult to see since ω(u) approaches its horizontal

asymptote of e−γ so rapidly, but it actually oscillates above and

below this number infinitely often with a crossing in each

interval framed by consecutive integers.

In one of the great theorems in analytic number theory in my

lifetime, Maier used the oscillations of the Buchstab function

to show that for each fixed κ > 1, there is a number cκ > 0 such

that the sets

{x ∶ π(x + (logx)κ) − π(x) > (1 + cκ)(logx)κ−1},
{x ∶ π(x + (logx)κ) − π(x) < (1 − cκ)(logx)κ−1}

are both unbounded.
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While a great theorem, what I particularly like are results that

are numerically explicit. For example, while we know from the

Prime Number Theorem that

pn ∼ n logn, n→∞,

where pn is the n-th prime, we have the wonderful inequality of

Rosser:

pn > n logn, n ≥ 1.

Recently Ford asked me if we had a good numerically explicit

upper bound for Φ(x,y). I passed this problem on to Steve

Fan, a grad student here, and he proved:

Φ(x,y) ≤ x

logy
, x ≥ y ≥ 2.
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It is clear that Fan’s inequality Φ(x,y) ≤ x/ logy is best possible,

since if y = x1−ε then Φ(x,y) ∼ x/ logx = (1 − ε)x/ logy.

His principal tool in proving this was the large sieve of

Montgomery and Vaughan.

When
√
x ≤ y ≤ x, Φ(x,y) counts precisely 1 and the primes in

(y,x]. It might be nice to have an inequality when y is smaller.

So we teamed up to prove the following.

Fan & P (2022): For 3 ≤ y ≤ √
x, we have Φ(x,y) < 0.6x/ logy.
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To prove this we consider various ranges for y. First, for y < 71

we do a complete inclusion-exclusion, necessarily checking some

small cases. And for 71 ≤ y < 241 we do a modified

inclusion-exclusion using the Bonferroni inequalities and a

pre-sieve with the primes 2, 3, 5. Each new prime involves

checking values of x in an increasingly long interval. Once this

gets larger than 3 × 107, we move to a new plan.

For larger values of y we use a numerically explicit version of

Selberg’s sieve. Helping were not only the usual calculations of

Rosser & Schoenfeld and Dusart, but some newer work of

Büthe. From his work we have

π(x) < li(x), x ≤ 1019.
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Using these tools we establish our inequality when u ≥ 7.5

(u = logx/ logy) using separate arguments when y ≤ 500,000 and

y > 500,000.

Next, we deal with the case 2 ≤ u < 3, with separate arguments

for y below and above 1100. We show a somewhat stronger

inequality in these ranges, which is useful, since we bootstrap

from these small values of u to u = 7.5 losing a little in each

step. But we nevertheless complete the proof getting our result

that Φ(x,y) ≤ 0.6x/ logy.
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Back to smooth numbers: Let Ψ(x,y) denote the number of

integers n ≤ x with all prime factors ≤ y. We know that

Ψ(x,y) ∼ ρ(u)x in a large range, where ρ is the

Dickman–de Bruijn function: ρ(u)′ = −ρ(u − 1)/u for u > 1, with

initial condition ρ(u) = 1 when u ≤ 1. Some years ago I

conjectured that

Ψ(x,y) > ρ(u)x, u = logx/ logy, x/2 ≥ y ≥ 2.

Very recent work of Gorodetsky proves essentially this under

assumption of an error term in the Prime Number Theorem

that is a bit stronger than the Riemann Hypothesis.
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Thank you
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