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Abstract: Given a natural number n, we ask whether every set of
residues mod n of cardinality at least n/2 contains elements a, b, c
with ab = c. It is proved that the set of numbers n failing to have
this property has upper density smaller than 1.56 × 10−8.

1. Introduction

In a recent paper [2] it has been shown that every set of positive integers
with lower asymptotic density greater than 1/2 contains three integers whose
product is a square. Thus, for every positive integer n, every set of residues
mod n of cardinality larger than n/2 contains residues a, b, c, d with abc = d2.
We conjecture that more is true and every set of residues mod n of cardinality
at least n/2 contains residues a, b, c with

ab = c. (1)

That is, say a set S is product free if (1) has no solution with a, b, c ∈ S. We
say a modulus n has “property P” if the largest product-free subset S of Zn

has cardinality strictly smaller than n/2. (We denote the ring of integers
mod n by Zn.)

Question 1. Does every natural number n have property P?

If true, Question 1 is best possible, since for n an odd prime, the set of
quadratic nonresidues mod n is product free and has cardinality (n− 1)/2.
We were initially prepared to assert as a conjecture an affirmative answer to
Question1, but in preliminary work of J. Lagarias, P. Kurlberg, and the first
author, there appear to be examples of numbers n that fail to have property
P. They have yet to come up with concrete examples, but such would seem
to have an enormous number of distinct prime factors.

In this paper we show that “most” numbers have property P in the fol-
lowing sense. Let s(n) denote the largest square-full divisor of n and let
ω(n) denote the number of distinct prime factors of n.

Theorem 1. A natural number n has property P if ω(s(n)) ≤ 5.

Theorem 2. The asymptotic density of the set of integers n with ω(s(n)) ≥
6 is smaller than 1.56 × 10−8. In particular, the set of integers failing to

have property P has upper density at most 1.56 × 10−8.
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We record some questions that we have not been able to settle, but which
may be tractable. It is easy to see that if a number has property P, then so
too does all of its divisors have property P. As a consequence, if a number
does not have property P, then so too does all of its multiples. Say a number
is P-primitive if it does not have property P, but all of its proper divisors
do have have property P.

Question 2. • Is it true that the reciprocal sum of the P-primitive

numbers is finite?

• Is it true that every P-primitive number is square-full?

• Is it true that as x → ∞, the number of P-primitive numbers in [1, x]
is xo(1)?

Since the reciprocal sum of the square-full numbers is finite, an affirmative
answer to either of the latter two parts implies an affirmative answer to the
first part. Further, an affirmative answer to the first part implies that the
set of numbers with property P has an asymptotic density.

In the final section we present some material showing that our Questions
are related to some problems in linear programming.

We remark that there has been some consideration in the literature of
large product-free subsets of finite groups. For a recent survey, with pointers
to other papers, see [3].

Acknowledgments. We thank the referee for a careful reading and the
editor for suggesting references [1] and [4]. In addition we thank Jeffrey
Lagarias, Pär Kurlberg, and Robin Pemantle for useful discussions.

2. Preliminary results

For a natural number n and a prime p, we let vp(n) be the number of
factors p in the prime factorization of n. We introduce some special nota-
tion that we will use throughout the paper. Suppose that n,m are coprime
natural numbers. (We shall later take n square-full and m squarefree, but
this is not necessary to assume in this section.) We consider the multiplica-
tive monoid Zn × Z∗

m, where Z∗
m is the unit group mod m. By the Chinese

remainder theorem, Zn × Z∗
m may be thought of as {a ∈ Znm : (a,m) = 1}.

For d | n, let

Td(n,m) = Td = {a ∈ Zn × Z∗
m : (a, n) = d}.

Further, if S ⊂ Zn × Z∗
m, let

Sd(n,m) = Sd = Td ∩ S, Rd(n,m) = Rd = Td \ Sd.

Lemma 1. Let n be a natural number. Suppose for each squarefree number

m coprime to n, if S ⊂ Zn × Z∗
m is product free, then |S| ≤ 1

2ϕ(m)n, with
strict inequality holding in the case m = 1. Then for every squarefree number

m coprime to n, we have that mn has property P.
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Proof. Let m be squarefree and coprime to n. For each j | m, let Aj =
{a ∈ Zmn : (a,m) = j}. Then Aj is a multiplicative monoid (with identity
a1, where a1 ≡ 1 (mod mn/j) and a1 ≡ 0 (mod j)) that is isomorphic to
Zn × Z∗

m/j. If S ⊂ Zmn is product free, then so is S ∩Aj for each j | m. By

hypothesis then, |S ∩Aj | ≤
1
2ϕ(m/j)n for each j | m, with strict inequality

holding in the case j = m. Thus,

|S| =
∑

j|m

|S ∩Aj| <
1

2
n
∑

j|m

ϕ

(

m

j

)

=
1

2
mn.

We conclude that mn has property P, completing the proof. �

Lemma 2. Suppose n,m are coprime natural numbers, S ⊂ Zn × Z∗
m is

product free, and D is a nonempty set of divisors of n with Sd = ∅ for each

d ∈ D. Let σ =
∑

d∈D 1/d. If

ϕ(n)

n
>

1

2σ
,

then |S| < 1
2ϕ(m)n.

Proof. We have

ϕ(m)n− |S| =
∑

d|n

|Rd| ≥
∑

d∈D

|Td| =
∑

d∈D

ϕ
(mn

d

)

≥ ϕ(mn)σ >
1

2
ϕ(m)n.

Thus, |S| < 1
2ϕ(m)n, completing the proof. �

Lemma 3. Suppose n,m are coprime natural numbers, S ⊂ Zn × Z∗
m is

product free, and S1 6= ∅. Then |S| ≤ 1
2ϕ(m)n. Further, in the case m = 1,

the inequality is strict.

Proof. Let s1 ∈ S1 and let d | n. Note that multiplication by s1 is a bijection
of Td and the image of Sd under this map is disjoint from Sd, that is, it is
contained in Rd. Thus, |Sd| ≤

1
2 |Td| so that

|S| =
∑

d|n

|Sd| ≤
1

2

∑

d|n

|Td| =
1

2
ϕ(m)n.

Now assume that m = 1. We need only show that at least one of the
inequalities |Sd| ≤

1
2 |Td| is strict, and indeed this is the case for d = n, since

|Tn| = 1. This completes the proof of the lemma. �

Remark. The multiplication-by-s1 argument in the proof is used in various
guises throughout the paper.

Corollary 1. Suppose n,m are coprime natural numbers, ϕ(n) > 1
2n, and

m is squarefree. Then mn has property P. In particular, every squarefree

number has property P.

Proof. By Lemma 1 it suffices to consider product-free subsets S of Zn×Z∗
m.

Lemma 2 handles the case S1 = ∅ and Lemma 3 handles the case S1 6= ∅. �
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For any natural number n, let rad(n) denote the largest squarefree divisor
of n and let σ(n) denote the sum of the divisors of n. Another way of stating
Corollary 1 is that if u = n/rad(n) and u/ϕ(u) < 2, then n has property P.
A stronger result holds: If σ(u)/u < 2, then n has property P. However we
will not need this stronger assertion. We do not know how to replace “2” in
either of these assertions with any larger number.

3. Propositions

The heart of our method is contained in the three propositions in this
section. With some effort it is likely they can be extended to more compli-
cated cases and so allow an improvement in our main result. Such efforts
might even lead to a complete proof of Conjecture 1.

Proposition 1. Suppose n,m are coprime natural numbers and S is a

product-free subset of Zn × Z∗
m. Suppose that p is a prime factor of n and

that Sp 6= ∅. Let D be a nonempty set of divisors of n not divisible by p with

Sd = ∅ for each d ∈ D, and let σ =
∑

d∈D 1/d. If

ϕ(n)

n
>

p− 1

2pσ
, (2)

then |S| < 1
2ϕ(m)n.

Proof. Suppose not and S is a counterexample for n. For any k, let n′ = n2pk

and let πk be the projection from Zn′ × Z∗
m to Zn × Z∗

m given by reducing
the first coordinate modulo n. Note that πk(ab) = πk(a)πk(b) for each pair
a, b ∈ Zn′ × Z∗

m, whence S′ = π−1
k (S) is product free. We claim that S′ is

a counterexample for n′. Indeed, |S′| = npk|S| ≥ 1
2ϕ(m)n2pk = 1

2ϕ(m)n′.
Further, for d ∈ D, Sd = ∅ implies that S′

d = ∅, and Sp 6= ∅ implies that
S′
p 6= ∅. Since ϕ(n)/n = ϕ(n′)/n′, we have an exact correspondence. In the

sequel we do not use the dash and instead we assume that d2 | n for each
d ∈ D and that vp(n) is very large. In addition, we denote vp(n) with the
letter k.

For a divisor d of n with p ∤ d and d 6∈ D, consider the sets Sp2id, Sp2i+1d

for 0 ≤ i < (k − 1)/2. Say sp ∈ Sp. Multiplication by sp is a p : 1 mapping
of Tp2id onto Tp2i+1d. Since S is product free, spSp2id is disjoint from Sp2i+1d.
We conclude that

1

p
|Sp2id|+ |Sp2i+1d| ≤ |Tp2i+1d| = ϕ

(

mn

p2i+1d

)

=
1

p2i+1
ϕ
(mn

d

)

.

In addition,

|Sp2id| ≤ |Tp2id| =
1

p2i
ϕ
(mn

d

)

, |Sp2i+1d| ≤ |Tp2i+1d| =
1

p2i+1
ϕ
(mn

d

)

.

These inequalities imply that

|Sp2id|+ |Sp2i+1d| ≤
1

p2i
ϕ
(mn

d

)
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and so

|Rp2id|+ |Rp2i+1d| ≥
1

p2i+1
ϕ
(mn

d

)

.

We conclude that
k
∑

j=0

|Rpjd| ≥
∑

0≤i<(k−1)/2

1

p2i+1
ϕ
(mn

d

)

=

(

p

p2 − 1
+O

(

p−k
)

)

ϕ
(mn

d

)

,

where O-constants may depend on p. Thus,

∑

d|n : p ∤ d, d6∈D

k
∑

j=0

|Rpjd| ≥

(

p

p2 − 1
+O

(

p−k
)

)

ϕ(m)
∑

d|n : p ∤ d, d6∈D

ϕ
(n

d

)

=

(

p

p2 − 1
+O

(

p−k
)

)

ϕ(m)ϕ(pk)

(

n

pk
−
∑

d∈D

ϕ

(

n

pkd

)

)

=

(

1

p+ 1
+O

(

p−k
)

)

ϕ(m)n −

(

p

p2 − 1
+O

(

p−k
)

)

ϕ(mn)σ.

For d ∈ D, we consider pairs Sp2i+1d, Sp2i+2d for 0 ≤ i < (k− 2)/2 and we
find in the same way that

∑

d∈D

k
∑

j=0

|Rpjd| ≥
∑

d∈D

|Td|+
∑

d∈D

∑

0≤i<(k−2)/2

1

p2i+2
ϕ
(mn

d

)

=
∑

d∈D

|Td|+

(

1

p2 − 1
+O

(

p−k
)

)

∑

d∈D

ϕ
(mn

d

)

=

(

p2

p2 − 1
+O

(

p−k
)

)

ϕ(mn)σ.

Hence,

ϕ(m)n − |S| =
∑

d|n

|Rd| ≥
1

p+ 1
ϕ(m)n +

p

p+ 1
ϕ(mn)σ +O

(

p−kϕ(m)nσ
)

.

By the hypothesis of the proposition,

1

ϕ(m)n

(

1

p+ 1
ϕ(m)n +

p

p+ 1
ϕ(mn)σ

)

>
1

p+ 1
+

1

2

p− 1

p+ 1
=

1

2
.

Thus, if k is sufficiently large, then

ϕ(m)n − |S| >
1

2
ϕ(m)n

and the proposition follows. �

Proposition 2. Suppose n,m are coprime natural numbers, 4 | n, S ⊂
Zn ×Z∗

m is product free, S2 = ∅, S4 6= ∅, and D is a set of odd divisors of n
containing 1 with Sd = ∅ for each d ∈ D. Let σ =

∑

d∈D 1/d. If

ϕ(n)

n
>

3

4 + 8σ
, (3)
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then |S| < 1
2ϕ(m)n.

Proof. As with the proof of Proposition 1, we may assume that d2 | n for
each d ∈ D and we may assume that k = v2(n) is very large. For d | n, d odd,
d 6∈ D, we consider the pairs S42id, S42i+1d and also the pairs S2·42id, S2·42i+1d

and we find that

k
∑

j=0

|R2jd| ≥
∑

0≤i<(k−4)/4

(

1

42i+1
+

1

2 · 42i+1

)

ϕ
(mn

d

)

=

(

2

5
+O

(

2−k
)

)

ϕ
(mn

d

)

.

Thus,

∑

d|n : d odd, d6∈D

k
∑

j=0

|R2jd| ≥

(

2

5
+O

(

2−k
)

)

∑

d|n : d odd, d6∈D

ϕ
(mn

d

)

=

(

2

5
+O

(

2−k
)

)

ϕ(2k)ϕ(m)

(

n

2k
−
∑

d∈D

ϕ
( n

2kd

)

)

=

(

1

5
+O

(

2−k
)

)

ϕ(m)n −

(

2

5
+O

(

2−k
)

)

ϕ(mn)σ.

For d ∈ D \ {1} we consider the pairs S42i+1d, S42i+2d and the pairs
S2·42id, S2·42i+1d, and we find that

∑

d∈D\{1}

|R2jd| ≥
∑

d∈D\{1}

|Td|+

(

1

5
+O

(

2−k
)

)

ϕ(mn)(σ − 1)

=

(

6

5
+O

(

2−k
)

)

ϕ(mn)(σ − 1).

Finally, we consider the pairs S42i+1 , S42i+2 and the pairs S2·42i+1 , S2·42i+2

and we find that

k
∑

j=0

|R2j | ≥ |T1|+ |T2|+

(

1

10
+O

(

2−k
)

)

ϕ(mn)

=

(

8

5
+O

(

2−k
)

)

ϕ(mn).

We conclude that

ϕ(m)n − |S| =
∑

d|n

|Rd|

≥

(

1

5
+O

(

2−k
)

)

ϕ(m)n+

(

4

5
σ +

2

5
+O

(

2−k
)

)

ϕ(mn),
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where the O-constant may depend on σ. By the hypothesis,

1

ϕ(m)n

(

1

5
ϕ(m)n+

(

4

5
σ +

2

5

)

ϕ(mn)

)

=
1

5
+

(

4

5
σ +

2

5

)

ϕ(n)

n

>
1

5
+

4σ + 2

5
·

3

8σ + 4
=

1

2
,

so for k sufficiently large, we have nϕ(m)− |S| > 1
2ϕ(m)n. This proves the

proposition. �

Proposition 3. Suppose n,m are coprime positive integers, S ⊂ Zn×Z∗
m is

product free, p, q | n are different primes, Sp, Sq 6= ∅, and D is a nonempty

set of divisors of n coprime to pq with Sd = ∅ for each d ∈ D. Let σ =
∑

d∈D 1/d. If

ϕ(n)

n
>

ϕ(pq)

2pqσ
, (4)

then |S| < 1
2ϕ(m)n.

Proof. Similarly as with the two previous propositions, we may assume that
d2 | n for each d ∈ D and k = vp(n), l = vq(n) are both large. Suppose that
d | n, (d, pq) = 1, and d 6∈ D. Let 0 ≤ i < (k − 2)/2, 0 ≤ j < (l − 2)/2,
and let u = p2iq2jd. We consider 4-tuples Su, Spu, Squ, Spqu. Using that S is
product free and Sp, Sq 6= ∅, we show that

∑

v|pq

|Rvu| ≥ |Tpu|+ |Tqu| =

(

1

p2i+1q2j
+

1

p2iq2j+1

)

ϕ
(mn

d

)

. (5)

To see this, let sp ∈ Sp, sq ∈ Sq. We have spSu disjoint from Spu and spSqu

disjoint from Spqu. Similarly, sqSu is disjoint from Squ and sqSpu is disjoint
from Spqu. Now multiplication by sp is a p : 1 mapping of Tu onto Tpu and
also of Tqu onto Tpqu, and similarly multiplication by sq is a q : 1 mapping
of Tu onto Tqu and of Tpu onto Tpqu. For v | pq, let αv = |Svu|/|Tvu|, so that
each αv ∈ [0, 1] and

α1 + αp ≤ 1, α1 + αq ≤ 1, αq + αpq ≤ 1, αp + αpq ≤ 1.

The maximal value of

α1 +
1

p
αp +

1

q
αq +

1

pq
αpq

subject to these constraints occurs when α1 = αpq = 1 and αp = αq = 0.
This proves (5).

In the sequel, O-constants possibly depend on p, q, and σ.
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We have

∑

d|n : (d,pq)=1, d6∈D

k
∑

i=0

l
∑

j=0

|Rpiqjd|

≥

(

1

p
+

1

q

)(

p2q2

(p2 − 1)(q2 − 1)
+O

(

p−k + q−l
)

)

∑

d|n : (d,pq)=1, d6∈D

ϕ
(mn

d

)

=

(

1

p
+

1

q

)

p2q2

(p2 − 1)(q2 − 1)
ϕ(m)ϕ(pkql)

(

n

pkql
−
∑

d∈D

ϕ

(

n

pkqld

)

)

+O
(

p−k + q−l
)

ϕ(m)n

=
p+ q

(p + 1)(q + 1)
ϕ(m)n −

pq(p+ q)

(p2 − 1)(q2 − 1)
ϕ(mn)σ

+O
(

p−k + q−l
)

ϕ(m)n.

Next suppose that d ∈ D. With u = p2i+1q2jd, we consider the 4-tuple
Su, Spu, Squ, Spqu as before, so that

∑

v|pq

|Rvu| ≥ |Tpu|+ |Tqu| =

(

1

p2i+2q2j
+

1

p2i+1q2j+1

)

ϕ
(mn

d

)

.

We also consider pairs Sq2j+1d, Sq2j+2d and we have

|Rq2j+1d|+ |Rq2j+2d| ≥ |Tq2j+2d| =
1

q2j+2
ϕ
(mn

d

)

.

Thus,

∑

d∈D

k
∑

i=0

l
∑

j=0

|Rpiqjd|

≥
∑

d∈D

|Td|+

(

q2 + pq

(p2 − 1)(q2 − 1)
+

1

q2 − 1
+O

(

p−k + q−l
)

)

∑

d∈D

ϕ
(mn

d

)

=

(

1 +
q2 + pq

(p2 − 1)(q2 − 1)
+

1

q2 − 1
+O

(

p−k + q−l
)

)

ϕ(mn)σ.

We conclude that

ϕ(m)n− |S| =
∑

d|n

|Rd|

≥
p+ q

(p + 1)(q + 1)
ϕ(m)n +

(

1 +
q2 + pq + p2 − 1− pq(p+ q)

(p2 − 1)(q2 − 1)

)

ϕ(mn)σ

+O
(

p−k + q−l
)

ϕ(m)n

=
p+ q

(p + 1)(q + 1)
ϕ(m)n +

pqσ

(p+ 1)(q + 1)
ϕ(mn) +O

(

p−k + q−l
)

ϕ(m)n.
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By (4),

1

ϕ(m)n

(

p+ q

(p+ 1)(q + 1)
ϕ(m)n+

pqσ

(p + 1)(q + 1)
ϕ(mn)

)

=
p+ q

(p+ 1)(q + 1)
+

pqσ

(p+ 1)(q + 1)

ϕ(n)

n

>
p+ q

(p+ 1)(q + 1)
+

(p− 1)(q − 1)

2(p + 1)(q + 1)
=

1

2
.

Thus, if k, l are sufficiently large,

ϕ(m)n − |S| >
1

2
ϕ(m)n,

which proves the proposition. �

4. Proof of Theorem 1

Let n be a square-full natural number with ω(n) ≤ 5. Via Lemma 1, to
prove that mn has property P for every squarefree number m coprime to n
it suffices to show that for each such m, the largest product-free subset of
Zn × Z∗

m has cardinality at most 1
2ϕ(m)n, with strict inequality in the case

m = 1.
So, we fix some integer m coprime to n and we take a product-free set

S ⊂ Zn × Z∗
m. By Lemma 3, we may assume that S1 = ∅. We consider the

4 cases depending on the 4 possibilities for (6, n).
First, assume that (6, n) = 1. Then

ϕ(n)

n
≥

4

5

6

7

10

11

12

13

16

17
>

1

2
,

so that Corollary 1 handles this case.
Next assume that (6, n) = 3. Then ϕ(n)/n ≥ 384/1001. If S3 = ∅,

Lemma 2 with D = {1, 3} completes the proof, so we may assume S3 6= ∅.
Then Proposition 1 with p = 3 and D = {1} completes the argument.

Now assume that (6, n) = 2. Then ϕ(n)/n ≥ 288/1001. If S2 6= ∅,
Proposition 1 with p = 2, D = {1} shows that |S| < 1

2ϕ(m)n. Thus, we
may assume that S2 = ∅. If 5 ∤ n, then ϕ(n)/n > 1/3, and then Lemma 2
with D = {1, 2} completes the proof, so we may assume that 5 | n. If
S5 6= ∅, Proposition 1 with p = 5, D = {1, 2} implies that we are done
with this case. So, assume that S5 = ∅. If S4 6= ∅, the result follows from
Proposition 2 with D = {1, 5}. So assume that S4 = ∅. Then Lemma 2 with
D = {1, 2, 4, 5} completes the argument.

The hardest case is when (6, n) = 6. In this case we have ϕ(n)/n ≥ 16/77.
If S2, S3 6= ∅, the result follows from Proposition 3 with p = 2, q = 3, and
D = {1}. Next assume that S2 6= ∅ and S3 = ∅. Then the result follows from
Proposition 1 with p = 2, D = {1, 3}. Now assume that S2 = ∅ and S3 6= ∅.
If 5 ∤ n then ϕ(n)/n ≥ 240/1001 and the result follows from Proposition 1
with p = 3, D = {1, 2}. So assume that 5 | n. If S5 6= ∅, the result follows
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from Proposition 3 with p = 3, q = 5, D = {1, 2}, so we may take S5 = ∅.
Then the result follows from Proposition 1 with p = 3, D = {1, 2, 5}.

We are left with the case that 6 | n and S1 = S2 = S3 = ∅. Proposition 2
with D = {1, 3} handles the case S4 6= ∅, so we may assume that S4 = ∅.
We consider the four possibilities for (35, n). If (35, n) = 1, then ϕ(n)/n ≥
640/2431, so that Lemma 2 with D = {1, 2, 3, 4} handles this case.

Suppose that (35, n) = 7, so that ϕ(n)/n ≥ 240/1001. Proposition 1 with
p = 7 and D = {1, 2, 3, 4} handles the case S7 6= ∅, while Lemma 2 with
D = {1, 2, 3, 4, 7} handles the case S7 = ∅.

Suppose that (35, n) = 5, so that ϕ(n)/n ≥ 32/143. Proposition 1 with
p = 5 and D = {1, 2, 3, 4} handles the case S5 6= ∅, while Lemma 2 with
D = {1, 2, 3, 4, 5} handles the case S5 = ∅.

Finally suppose that 35 | n. If either S5 6= ∅ or S7 6= ∅, Proposition 1 with
D = {1, 2, 3, 4} completes the proof. So assume that S5 = S7 = ∅. Then
Lemma 2 with D = {1, 2, 3, 4, 5, 7} completes the proof.

We remark that our existing tools make it possible to begin handling the
case ω(s(n)) = 6 and perhaps it is possible to complete this case. Even a
partial result would give a better density estimate in the next section.

5. Density

In this section we prove Theorem 2. For a natural number n, recall that
rad(n) is the largest squarefree divisor of n. Let m be a squarefree integer
and let dm be the density of those integers n with rad(s(n)) = m. For
rad(s(n)) = m it is necessary and sufficient that m2 | n and vp(n) ≤ 1 for
each prime p ∤ m. Thus,

dm =
1

m2

∏

p ∤m

(

1− p−2
)

=
6

π2m2

∏

p|m

(

1− p−2
)−1

.

Let f(m) =
∏

p|m 1/(p2 − 1), so that

dm =
6

π2
f(m). (6)

It is our task in this section to compute the asymptotic density d of the set
of those integers n with ω(s(n)) ≥ 6. Namely, we wish to compute

d :=
∑

ω(m)≥6

µ2(m)dm =
6

π2

∑

ω(m)≥6

µ2(m)f(m) = 1−
6

π2

∑

ω(m)≤5

µ2(m)f(m).

Let δj =
∑

ω(m)=j µ
2(m)f(m). We now compute δj for j = 0, 1, . . . , 5.

We evidently have

δ0 = 1.

For δ1, we accelerate the convergence of the series as follows:

δ1 =
∑

p

1

p2 − 1
= log

(

π2

6

)

+
∑

p

(

1

p2 − 1
+ log

(

1− p−2
)

)

,
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and so we find that

δ1
.
= 0.551693297656999

rounded to 15 decimal places.
The computation for δj for j > 1 is simplified by applying the Newton–

Girard formula for symmetric functions. In particular, with

ηj =
∑

p

1

(p2 − 1)j
,

we have

δj =
1

j

j
∑

i=1

(−1)i−1ηiδj−i. (7)

Note that (7) allows one to compute each δj recursively in terms of previous
values of δi and values of the very rapidly converging series ηi (where η1 = δ1
has already been computed). To 15 decimal places, we have

η2
.
= 0.129038925897808,

η3
.
= 0.039072405735575,

η4
.
= 0.012593028398642,

η5
.
= 0.004145873475259.

Thus, via (7), we have

δ2
.
= 0.087663284390923,

δ3
.
= 0.005415247209989,

δ4
.
= 0.000159633875359,

δ5
.
= 0.000002578156405.

We conclude that

d = 1−
6

π2
(δ0 + δ1 + δ2 + δ3 + δ4 + δ5)

.
= 1−

6

π2
(1.64493404128968)

.
= 1.553774 × 10−8,

which proves Theorem 2.

6. Further remarks

One might consider large product-free subsets of N, the set of natural
numbers. It is easy to see that there are product-free subsets of N with
asymptotic density equal to 1/2. Here are some examples:

• the set of natural numbers n that are the product of an odd number
of primes;

• the set of natural numbers n that are the product of a number that
is 3 mod 4 and a power of 2;

• the set of natural numbers n that are the product of a number that
is 2 mod 3 and a power of 3;
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• more generally, for any odd prime p, the set of natural numbers n
which are a product of a quadratic nonresidue mod p and a power
of p.

These examples, the first of which was noted in [2], also show that the
principal result of [2] is best possible. A further example is supplied in
Fish [1] where it is shown that there are “normal” subsets of N which are
product free. (A subset S of N is normal if the characteristic function of S,
written as a sequence of 0’s and 1’s, is normal. Necessarily a normal subset
of N has density 1/2.) If, as we think now, there are numbers n which do
not have property P, then there are product-free subsets of N with density
larger than 1/2.

Schur [4] showed that if N is k-colored there must be a monochromatic
solution to a + b = c. A. Sárközy suggested to us that one might consider
the multiplicative analog: If N is k-colored, must there be a monochromatic
solution to ab = c? Since 1 · 1 = 1, the number 1 should not be allowed in
the set, so we are k-coloring N \ {1}. By considering the powers of 2, one
sees that the multiplicative analog immediately follows from the original
additive version. So, it is reasonable to consider then the multiplicative
problem for squarefree numbers larger than 1. Here’s a proof in the case
k = 2: Let p1, . . . , p9 be any 9 primes, and so without loss of generality, we
may assume that each of p1, . . . , p5 is red. We then may assume that each
product of 2 of these is blue and so each product of 4 of these is red. Then
the product of all 5 is blue, and since a product of 4 can be written as one
of the primes times the other 3, each product of 3 primes is blue. But then
p1p2 · p3p4p5 = p1p2p3p4p5 is all blue. It is possible, maybe even likely, that
these thoughts generalize to k colors, and perhaps this and related topics
would be interesting to explore.

Consider the following question. Let Ω(n) denote the number of prime
factors of n counted with multiplicity.

Question 3. Let p1, p2, . . . , pk be distinct primes, let b be a positive integer,

and let n = (p1p2 . . . pk)
b. For u | n let αu be a real variable in [0, 1] such

that if uv | n and αu > 0, then αv + αuv ≤ 1. Further suppose that α1 = 0.
Then do we have

∑

u|n

αu

u
<

∑

u: rad(u)|n
Ω(u) odd

1

u
?

Remark. Note that the second sum is over an infinite set of numbers u.

Theorem 3. Suppose m is a squarefree number and that we have an af-

firmative answer to Question 3 for each n running over the powers of m.

Then every number n with rad(n) | m has property P.

Proof. Assume the hypothesis of the theorem and let m = p1p2 . . . pk, where
p1, p2, . . . , pk are distinct primes. Since every every divisor of a number with
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property P also has property P, it is thus sufficient to show that n = mb+1

has property P for every large integer b.
Suppose that n = mb+1 and S ⊂ Z/nZ is product free. For u | n, let

Tu = Tu(n, 1), Su = S ∩ Tu as in Section 2, and let αu = |Su|/|Tu|. By
Lemma 3 (with “m” being 1), we may assume that α1 = 0. Assume uv | mb

and αu > 0. Then Su 6= ∅, say su ∈ Su, and multiplication by su is a u : 1
mapping of Tv onto Tuv. Since S is product free, we have suSv ∩ Suv = ∅,
so that

1

u
|Sv|+ |Suv| ≤ |Tuv |;

that is,

αv
ϕ(n)

uv
+ αuv

ϕ(n)

uv
≤

ϕ(n)

uv
,

or αv + αuv ≤ 1. Thus, the numbers αu for u | mb satisfy the hypotheses of
Conjecture 3, and so

∑

u|mb

αu

u
<

∑

rad(u)|m
Ω(u) odd

1

u
=

1

2

∑

rad(u)|m

(

1

u
−

(−1)Ω(u)

u

)

=
1

2

(

m

ϕ(m)
−

m

σ(m)

)

.

Note that

|S| =
∑

u|n

|Su| =
∑

u|n

αuϕ
(n

u

)

≤ ϕ(n)











∑

u|mb

αu

u
+
∑

u|n
u ∤mb

1

ϕ(u)











.

The first sum here is bounded as above, and the second sum is bounded by

m

ϕ(m)

∑

u|n
u ∤mb

1

u
≤

(

m

ϕ(m)

)2
∑

p|m

1

pb+1
<

1

2

m

σ(m)

if b is sufficiently large (b ≥ k + 4 is sufficient). For such b,

|S| <
ϕ(n)

2

(

m

ϕ(m)
−

m

σ(m)

)

+
ϕ(n)

2

m

σ(m)
=

ϕ(n)m

2ϕ(m)
=

1

2
n.

Thus, n has property P. �

Question 3 may be recast as a linear program as follows. We have the lin-
ear function

∑

u|n αu/u in the variables αu that we are seeking to maximize,

but to be a linear program, the domain must be a convex polytope. Note
that the condition “αu > 0 implies αv + αuv ≤ 1” is equivalent to “αu = 0
or αv+αuv ≤ 1”, and so the domain is a finite union of polytopes. Since the
maximum of a linear function over a finite union of polytopes is equal to the
maximum over their convex hull, we thus may enlarge the domain to obtain
a linear program which has the same maximum as the original problem.

We close this paper with a proof of an affirmative answer to Question 3
when k ≤ 2 using tools close to those used in Section 3.
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Theorem 4. The answer to Question 3 is yes for k = 1 and k = 2.

Proof. For k = 1 with prime p and n = pb, we have divisors pi of n for
i = 1, . . . , b. If αp = 0, then

∑

u|n

αu

u
<
∑

i≥2

1

pi
=

1

p(p− 1)
.

But
∑

i odd

1

pi
=

p

p2 − 1
=

1

p− 1/p
,

which does indeed exceed the prior estimate. Thus, we may assume that
αp > 0. Then for i odd and pi+1 | n, we have αpi + αpi+1 ≤ 1 so that

αpi

pi
+

αpi+1

pi+1
≤

1

pi
.

Using also αpb ≤ 1, we have

∑

u|n

αu

u
≤
∑

i≤b
i odd

1

pi
<
∑

i odd

1

pi
,

completing the case k = 1.
For k = 2, we write n = (pq)b where p, q are distinct primes. We wish to

show that L < R, where

L :=
∑

u|n

αu

u
, R :=

∑

rad(u)|pq
Ω(u) odd

1

u
=

1

2

(

pq

ϕ(pq)
−

pq

σ(pq)

)

=
pq(p+ q)

(p2 − 1)(q2 − 1)
,

(cf. the proof of Theorem 3). First assume that αp = αq = 0. Then

L <
∑

i+j≥2

1

piqj
=

pq

(p − 1)(q − 1)
− 1−

1

p
−

1

q
=

pq + p2 + q2 − p− q

pq(p− 1)(q − 1)
,

so that if s = p+ q and m = pq, we have

L

R
<

(s2 −m− s)(p + 1)(q + 1)

sm2
=

(s2 −m− s)(s+m+ 1)

sm2

=

(

s− 1

m
−

1

s

)(

s+ 1

m
+ 1

)

.

As a function of m this expression is decreasing. But m ≥ 2(s − 2), so we
have

L

R
<

(

s− 1

2(s− 2)
−

1

s

)(

s+ 1

2(s− 2)
+ 1

)

=
3

4
+

3

4(s − 2)2
+

3

2s(s− 2)
.

As a function of s this expression is decreasing, and since s ≥ 5, we have
L/R < 14/15 < 1.
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Now assume αp > 0 and αq = 0 (the case where αp = 0, αq > 0 will follow
in the same way). If pd | n, then αd + αpd ≤ 1, so that

αd

d
+

αpd

pd
≤

1

d
. (8)

We use (8) for d = pi with i odd, for d = piq with i odd, and for d = piqj

with i even and j ≥ 2. But, if such a number d | n has vp(d) = b, we use
αd ≤ 1. We thus have

L <

(

1 +
1

q

)

∑

i odd

1

pi
+
∑

i even
j≥2

1

piqj
=

(

1 +
1

q

)

p

p2 − 1
+

p2

(p2 − 1)q(q − 1)
,

and so

L

R
<

p(q + 1)(q2 − 1) + p2(q + 1)

pq2(p+ q)
<

q2 + q − 1 + p+ p/q

q2 + pq
.

Since p(1− 1/(q2 − q)) > 1, we have p(q − 1) > q − 1 + p/q, so L < R.
Our last case is when αp > 0, αq > 0. If pqd | n and d > 1, we have

αd + αpd ≤ 1, αd + αqd ≤ 1, αpd + αpqd ≤ 1, αqd + αpqd ≤ 1,

so that as in the proof of Proposition 3, we have

αd

d
+

αpd

pd
+

αqd

qd
+

αpqd

pqd
≤

1

d
+

1

pqd
.

We apply this when d = piqj when i is even and j is odd. When i is odd
and j = 0, we apply (8). But, if such d | n has either vp(d) = b or vq(d) = b,
we merely use αd ≤ 1. We thus have

L <
∑

i even
j odd

(

1

piqj
+

1

pi+1qj+1

)

+
∑

i odd

1

pi
=

∑

rad(u)|pq
Ω(u) odd

1

u
= R.

This concludes our proof. �
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