SHELDON PRIMES
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ABSTRACT. In [1], the authors introduce the concept of a Sheldon
prime, based on a conversation between several characters in the
CBS sitcom The Big Bang Theory. The authors of [1] leave open
the question of whether 73 is the unique Sheldon prime. This paper
answers this question in the affirmative.

1. INTRODUCTION

A Sheldon prime was first defined in [1] as an homage to Sheldon
Cooper, a fictional theoretical physicist on the tv show The Big Bang
Theory, who claimed 73 is the best number because it has some seem-
ingly unusual properties. First note that not only is 73 a prime number,
its index in the sequence of primes is the product of its digits, namely
21: it is the 21-st prime. In addition, reversing the digits of 73, we
obtain the prime 37, which is the 12-th prime, and 12 is the reverse of
21.

We give a more formal definition. For a positive integer n, let
pn denote the n-th prime number. We say p, has the multiplica-
tion property if the product of its base-10 digits is precisely n. For
any positive integer x, we define rev(z) to be the integer whose se-
quence of base-10 digits is the reverse of the digits of x. For example,
rev(1234) = 4321 and rev(310) = 13. We say p, satisfies the mirror

property if rev(p,) = Drev(n)-

Definition 1.1. The prime p, is a Sheldon prime if it satisfies both
the multiplication property and the mairror property.

In [1], 73 is shown to be the only Sheldon prime among the first ten
million primes. We will show it is the unique Sheldon prime.

2. THE PRIME NUMBER THEOREM AND ITS CONNECTION TO
SHELDON PRIMES

Let 7(x) denote the number of prime numbers in the interval [2, z].
Looking at tables of primes it appears that they tend to thin out,
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becoming rarer as one looks at larger numbers. This can be expressed
rigorously by the claim that lim 7 (z)/x = 0. In fact, more is true: we
T—>00

know the rate at which the ratios 7(z)/x tend to 0. This is the prime

number theorem:
m(z)

2.1 li =1
(2.1) z 00 x/logx

where “log” is the natural logarithm function. This theorem was first
proved in 1896 independently by Hadamard and de la Vallee Poussin,
following a general plan laid out by Riemann about 40 years earlier
(the same paper where he first enunciated the now famous Riemann
Hypothesis).

We actually know that for large values of z, m(z) is slightly larger
than z/logz, in fact there is a secondary term z/(log x)?, a positive
tertiary term, and so on. The phrase “large values of " can be made
numerically explicit: A result of Rosser and Schoenfeld [7, (3.5)] is that

x for all z > 17.

(2.2) m(z) > o

This beautiful inequality immediately allows us to prove that no Shel-

don prime exceeds 10%°, and in fact, we only need the multiplication
property to show this.

Proposition 2.1. Ifp, has the multiplication property, then p, < 10%.

Proof. Say p, has k digits with the leading digit a. Then the product

of the digits of p, is at most ax9*~1. Using (2.2), for p,, > 17, we have
Pn

log

But p, > ax10*~! since p, is k digits long. So, if p, has the multipli-
cation property, then the following inequality must be satisfied:

ax10F-1

n=m(p,) >

9]671
o ~ log(ax10k-1)’
which implies that
10\ ¥
(2.3) log a + log(10%71) > (§> .

Since for any fixed € > 0, we have logz < ¢ for all sufficiently large
x depending on the choice of ¢, it is clear that (2.3) fails for all large
values of k. Further, if (2.3) fails for a = 9, then it also fails for smaller
values of a. A small computation and mathematical induction allow us
to see that (2.3) fails for all &k > 46. O
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In [1], the authors show that the primes p; = 17,py; = 73, and
Dis1.440 = 2,475,989 each satisfy the multiplication property. This leads
us to the following conjecture.

Conjecture 2.2. The only primes with the multiplication property are
pr =17, pau =73, and pigiaa0 = 2,475,989.

We have exhaustively searched for primes p,, with the multiplication
property for all n < 10'° (using the built-in Mathematica function that
gives the n-th prime), and found only the 3 examples listed above. It is
certainly possible to extend this search, but it seems computationally
challenging to cover all of the territory up to 10%.

An example of a challenging number to analyze is

n = 276,468,770,930,688 = 21731672,

It is not impossible, but difficult to compute p,. If only we could ap-
proximate p,, we might be able to determine its most significant digits,
which may allow us to rule it out. As discussed in Section 4 below, this
approximation is afforded by the inverse function of the logarithmic
integral function, namely 1li*(n). Definitions will be forthcoming, but
for now note that Lemma 4.3 shows that

(2.4) 9,897,979,324,865,422 < p,, < 9,897,979,533,554,693.

We deduce that the top 7 digits of p, are 9,8,9,7,9,7,9 and the 8-th
digit must be a 3,4, or 5. The product of the first 7 digits is 2,571,912,
and the quotient after dividing this into n is 107,495,424 = 21438 If p,,
were to satisfy the multiplication property, we see that the remaining 9
digits in p,, must consist of four 9’s, four 8’s, and one 4. Thus, we may
assume the 8-th digit of p,, is 4, and the last digit is 9. There are still
35 possibilities for the placement of the remaining digits. Although we
may hope each would result in a composite number, that is not the
case. For example, we have the candidates:

9,897,979,489,888,999,

9,897,979,489,989,889,

9,897,979,489,998,889,

9,897,979,498,889,899.
Each of the above is prime, the product of their digits is n, and the only
thing in doubt is their indices in the sequence of primes. These indices
are all near n, but there are still many possibilities. It is certainly a

tractable problem to find these indices, but it seems there will be many
similar and much harder challenges as one searches higher.
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To prove our theorem that 73 is the only Sheldon prime we will make
use of the mirror property in addition to the multiplication property.
For example, the mirrors of the above 4 primes are all composite, so
they are instantly ruled out as Sheldon primes.

Though the bound 10%** may seem daunting, we see at least that
the search for Sheldon primes is finite. Our basic strategy is to use
numerically explicit versions of the prime number theorem, similar to,
but finer than (2.2), to give us some of the leading and trailing digits of
candidate primes, and use these to hopefully eliminate them. Further
our search is not over all primes to 10* but over integers n with p, <
10%.

But first we need to assemble our weapons for the attack!

3. PROPERTIES OF SHELDON PRIMES

Because a Sheldon prime must satisfy both the multiplication prop-
erty and the mirror property (described in the Introduction), there are
a few simple tests one can apply to candidates based on properties of
Sheldon primes.

Proposition 3.1. If p, is a Sheldon prime and n > 10'°, then

(1) n is T-smooth (meaning that no prime dividing n exceeds 7),

(2) 100 1 n,

(3) the leading digit of p, must be in {1,3,7,9},

(4) 5 1 n,

(5) if pn > 10", then 5 { n,

(6) pn cannot have a digit 0, and cannot have a digit 1 except pos-
sibly for the leading digit,

(7) the leading digit of prev(ny must be in {3,7,9}.

Proof. Parts (1) and (2) were shown in [1]. Part (3) is clear since
rev(p,) must be prime, and primes beyond single digits must end in
1,3,7 or 9. One can prove part (4) using the same method as the proof
of Proposition 2.1. In particular,

ax10F-1
log(ax10k-1)
fora =1,3,7or 9 and k > 5. One can similarly derive part (5). It is
obvious that no prime having the multiplication property can have a

digit 0. For the second part of (6), suppose that p, has a digit 1 after
the leading digit. But

ax5rx 9k <

ax10kF1

P2
@ log(ax10k-1)
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for a =1,3,7 or 9 and k& > 6. This proves (6), and since we now know
that the trailing digit of p, cannot be 1, part (7) follows immediately.
O

With Proposition 3.1 in hand, we are almost ready to begin the
search to 10%. However, it is not so simple to compute p, for large
numbers n. What is simple is computing the inverse of the logarithmic
integral function, li"'(n), and so we would like to know how close this
is to p,. The tools in the next section give us some guidance in this
regard.

4. BOUNDS
We will make use of the first Chebyshev function, 0(x) = Zlog P,
p<z
. . - Todt
where p runs over prime numbers. We will also require li(x) = oot
o 108

the logarithmic integral function. Here the “principal value” is taken
at the singularity at ¢ = 1; that is, if z > 1, then

, , Y qt vodt
li(z) = lim — 4 — .
y—ot \ Jg  logt 14y lOgt

This is the traditional way of defining li(z) and it has its advantages,
but it admittedly makes the function li(x) look very complicated, and
Todt
o logt
The function li(z) is a much better approximation to m(x) than is
x/log x and it is why we introduce it. In any event, li(x) is asymptotic

to x/logz, in that

doing so only adds a constant to the perhaps more natural

li(x)
zoo v/ logx
(This can be easily proved using L’Hopital’s rule.) We shall also be
using the inverse of li(x), namely 1i"*(z), which satisfies
it
fim )

z—oo 1 log x

It is of interest to us because li"!(n) is a very good approximation to
pn. How good we shall see shortly.
Let

Alx) =z —0(x),
B(z) =li(z) — 7(x),
C(n) = po — 17 (n)
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We wish to find numerically explicit bounds for |C(n)|. Lemma 4.1
relates the functions A and B, and Lemma 4.2 relates B and C. We
will use these relations to ultimately obtain bounds for |C(n)|.

Lemma 4.1. For x > a > 2, we have
Alw) _Afa) | [*_AQ)
B(x) — B(a) = —
(z) (a) logz loga +/a t(logt)?

Proof. This result follows from “partial summation,” a discrete ana-
logue of integration by parts. However, we may verify the identity
directly. Note that

/x a1 1
. t(logt)? loga loga’
so that

’ log p
/a logt log ) di+ Z / t(logt)?

9( ) _ 8 3 logp logp
" loga log x logp logx

a<p<lz
_ 0(a) _ b(2)
~loga logx *(z) = n(a)
Since e g
x a
=i —1i —
/a (logt)? i(w) — li(a) log © + loga’

we thus have

/x AWy - / ) =t 4~ Ba) — Bla) — 28 4 Al0)

t(logt)? t(logt)? logz  loga’
and the result is proved. O

We will choose some convenient number for a where A(a), B(a) has
been computed (a = 10' in Proposition 4.5).

Lemma 4.2. For any integern, |C(n)| < |B(p,)|log (max{p,,li " (n)}).

Proof. We apply the mean value theorem to the function li on the
interval with endpoints p, and li"'(n) to obtain

D — lifl(n)

li(p,) — n =
l(pn) n logu

for some value of u in the interval. Thus,
(4.1) C(n) = B(pn)logu,

and taking absolute values, the result follows. 0
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We will split the positive integers into two intervals: those at most
10" and those above 10'. If we are in the lower range, then Biithe |3,
Theorem 2] gives the following strong inequality. For 2 < x < 1019,

NG 39 195
4.2 0< B 1.95 .
(42) < Ble) < log x + log x + (log x)?

This allows us to use (4.1) to obtain the following bound on C(n).

Lemma 4.3. For p, < 10%?,

. 19.
0<C(n) < pn<1.95+ 59 95 )

_l’_
logp,  (logpn)?

Note that if we only know n and are not sure what p, is we can
still use Lemma 4.3 if we combine it with the simple upper bound

from [7, (3.13)]:
(4.3) pn < n(logn +loglogn), n > 6.

For example, we have (2.4) from Section 2. For another example,
suppose n = 3%°. We compute that

li'(3%) = 2.05844182653518213541x 10'®,

with an error smaller than 0.01. The error bound given by (4.3) and
Lemma 4.3 is < 3x10°. Thus p, has 19 digits and the leading 9 of
them are 205844182. This n is obviously not a Sheldon prime, as it
will clearly fail the multiplication property.

For x > 10", we use the following estimate for | A(z)| from [5, Propo-
sition 2.1] that uses bounds of Biithe [2].

Lemma 4.4. For z > 10", |A(x)| < ex, with ¢ = 2.3x1078.

With Lemma 4.4, we can now construct our remaining upper bound
for C'(n).

Proposition 4.5. Let

X

E(z) = (5.5><109 + 2.3><10—81 +1.202x 10—%) log .

og x
For p, > 10, we have

IC(n)| < E(li'(n)).
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Proof. Let a = 10'9. Using (4.2), we have |B(a)| < 2x10%. We now
use Lemma 4.4 to get for x > a,

G e
log x ogx
A
[A(a)] < 5.3x10°, and
loga
T A(t 2.3%x1078
/ A®)] dt < 2% (x —a) <1.2017x10" M.
. t(logt)? (log a)?

We thus conclude from Lemma 4.1 that for x > 10,
[A(a)| | |A(z)] /x [A)]
B B ———dt
|B(z)] <Bla)]+ loga + log x + . t(logt)?
L 11.2017x107 g

< 5.5x107 +2.3x1078
log =

Let

X

Ey(z) = (5.5x10° + 2.3><10—8l +1.2017x10""2) log z,

ogw
so that from Lemma 4.2 we have for p, > 10 that

|C(n)| < By (max{p,,li " (n)}).

The proposition follows in the case that p, < li"'(n). Suppose the
reverse inequality holds, that is, p, > li"!(n). We can use the upper
bound (that’s evidently an improvement on (4.3)!)

loglogn — 2

pn<n<logn+loglogn—1+ ) n > 688,383

logn

found in [4, Proposition 5.15]. With this we find that

Ey(pa) < E(li(n))

for n > 10", which then completes the proof. ([l

Our calculations were performed using Mathematica. In particular,
we used the built-in function LogIntegral [x] for li(z). Starting from
the approximation z(logz + loglogx — 1), we were then able to use a
few iterations of Newton’s method to compute li™*(z) for numbers z
of interest to us.
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5. SEARCHING UP TO 109

First note that by Lemma 4.3, if p,, < 10 thenn < N := 2.341x10'7.
So we begin our search by creating a list of all 7-smooth numbers up
to N. This is quickly computed by creating a list of numbers of the
form 2¢3°5¢7¢, with

In particular, there are 57,776 integers of this form. We remove the
7.575 members of the table that are at most 10'° since we have previ-
ously searched over these numbers n to recover the 3 primes satisfying
the multiplication property.

We will use the properties of Proposition 3.1 to eliminate the re-
maining 50,201 values of n. First we remove those n where 100 | n or
5 | n, leaving 13,335 numbers. For these n, we compute i *(n) and
check via Lemma 4.3 that the leading digit is well determined. Simi-
larly we check that the number of digits of p,, is well determined. Then
we select those with the leading digit of p,, in {1,3,7,9}. This reduces
our list to a possible 6,893 candidates.

We then select those n where the top 5 digits of p,, are given by the
top 5 digits of li"!(n) using Lemma 4.3. All but 68 values of n have this
property. Using the same method as Proposition 2.1, we assume that
all the remaining digits of p, are 9’s and check to see if the product
of these 9’s and the top 5 known digits is at least n. If not, we can
rule out n, and this eliminates all but 576 cases. For these cases, we
check if the top 6 digits are given by i *(n), and all but 61 of them
still have this property. We then repeat the multiplication test with
the top 6 digits and this leaves only 180 numbers. Combined, our three
remaining sets together total 309 = 68 4 61 4 180 possible candidates.

For these remaining numbers n, we compute rev(n). By part (7) of
Proposition 3.1, there are only 60 with first digit of prev(n) in {3,7,9}.
Of these, 55 of them have known top 5 digits. The 5 exceptions corre-
spond to rev(n) being one of

4,019,155,056, 4,032,803,241, 4,079,545,092,
12,427,422.237, 29,794,252,274.
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These are all small enough so that we can find the corresponding primes
directly:

97,496,326,163, 97,841,660,857, 99,024,780,191,
316,109,730,941, 785,009,387,557.

They all have a digit 0 except for the first one, and that has an internal
digit 1, and so these 5 are ruled out by part (6) of Proposition 3.1.
With the remaining 55 numbers, we can again use the multiplication
test with rev(n), as described above, and this eliminates all but 6 of
them. These are too large to find the corresponding primes, but we can
easily find how many digits the corresponding primes have, and only 2
of the 6 have the same number of digits as the primes corresponding
to n. For these two, we know the leading 6 digits of p, and the leading
5 digits of prev(n), which would need to be the trailing 5 digits of p, if
pn were indeed a Sheldon prime. The product of these 11 digits times
the appropriate power of 9 for the still-unknown digits is too small for
these to be Sheldon primes. This completes the search up to 10,

6. COMPLETING THE SEARCH

We use similar methods as in the prior section, but now we use
Proposition 4.5. If p, < 10%, then n < 9.746x10*2. We compute
the 7-smooths to this bound, there are 1,865,251 of them. Removing
those less than 2.34x10'" and those divisible by 100 or 125 leaves a list
of 213,449 remaining numbers. Each of these gives an unambiguous
first digit for p,, and then selecting those where the first digit is in
{1,3,7,9} leaves 112,344. We then verify that for each of these we can
use li"'(n) to determine the exact number of digits of p,,.

We then test if the first 5 digits of p,, are unambiguous and all but
167 of them have this property. For those that do have the property,
we multiply the top 5 digits by an appropriate power of 9 to get an
upper bound on the product of the digits of p,, keeping only the 992
of them where this upper bound is at least n. We then repeat this
procedure with the top 6 digits. All but 27 of them have the top 6
digits determined, and of the remaining values of n, all but 278 of
them are discarded because the product of digits is too small. We then
keep only those where the product of the first 6 digits divides n; there
are 142 left.

We thus have a remaining set of size 336 = 167 + 27 + 142 numbers
n. For these, we check that the number of digits and the first digit of
Drev(n) is determined from li~"(rev(n)). We then discard those where
the number of digits of p, is not equal to the number of digits of prev(n)



SHELDON PRIMES 11

and those where the top digit of prev(n) is not in {3,7,9}. This leaves
only 44 numbers. Each of these has li ' (rev(n)) able to determine the
top 5 digits of prev(n), and all of these values of n fail the test where we
multiply the top 5 digits of prey(n) and the appropriate power of 9 and
check that against n.

This completes the proof that 73 is the unique Sheldon prime.

7. FUTURE WORK

Several generalizations and extensions of this concept naturally emerge
from the above discussion. For instance, the multiplication property of
a Sheldon prime clearly rests on its base-10 representation. Can you
classify all primes satisfying the multiplication property in different
bases? For instance, 226,697 is the 20,160th prime, and its base-9 rep-
resentation is 3748659. Multiplying its base-9 digits together returns
20,160 and so we can say 226,697 satisfies the multiplication property
in base-9.

Is there a meaningful way to describe a prime which nearly has the
multiplication property? For instance, p3s = 149. The product of the
digits of 149 is 36, which is only 1 away from 35, and hence 149 is quite
close to having the multiplication property.

For a positive integer n, let f(n) denote the product of the base-
10 digits of p,. Then an index n for which p, has the multiplication
property satisfies f(n) = n, and conversely. If we iterate the function
f we can find some longer cycles. For example, f(1) = 2, f(2) = 3,
f(3) =5, f(5) = 1. Since a cycle must contain a number n such that
f(n) > n, it’s clear from Proposition 2.1 that there are only finitely
many cycles. Can one find any others? Note that an iteration comes
to an end as soon as a number n is encountered such that p, has a 0
digit. Otherwise an orbit eventually enters a cycle.

It is interesting to note that most primes do have a digit 0 in their
decimal expansion, since the number of integers in [2, 2] with no digit
0 is at most about z%%% which is small compared with 7(x) (which
we have seen is about z/logz). One might guess there are infinitely
many primes missing the digit 0, and in fact, this was recently proved
by Maynard [6].
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