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A shifted prime is a number p + a, where p is prime and a is any

nonzero integer. The view is that a is fixed and p runs over

primes, so we shift the primes by a. Most questions are not too

sensitive about the choice of a, except for some obvious things.

Like: are there infinitely many shifted primes p + a that are also

prime? (Conjecturally YES if a is even. Obviously NO if a is

odd!)

In this talk we will focus on the case a = −1, that is, numbers of

the form p −1, since this case has some interesting applications.
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Hardy and Ramanujan had shown that a typical integer n has

about log logn prime factors. In the paper below of Erdős,

submitted when he was 21, he showed that most shifted primes

p − 1 are like typical integers in this regard.
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Erdős also gave an argument that there exist integers with an

extraordinarily large number of shifted-prime divisors. He used

this to show a fantastic result about Euler’s function ϕ:

There is a positive number c such that for all large x there is a

number n ≤ x such that the equation ϕ(m) = n holds for at least

xc numbers m.

He conjectured this holds for every fixed c < 1. There’s been a

long history of getting larger values of c, the current record

holder is Lichtman, who got c = .7156.
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Let ω(n) denote the number of primes that divide n. For
example, ω(11) = 1, ω(12) = 2, etc. We know, essentially from
Mertens that

∑
n≤x

ω(n) = ∑
p≤x

⌊
x

p
⌋ = x log logx +O(x).

Further, let ω∗(n) denote the number of shifted-prime divisors
p − 1 of n. For example, ω∗(11) = 1, ω∗(12) = 5, etc. It might
seem perhaps that ω∗ more resembles τ(n), the total number of
divisors of n. However, the same argument using the Mertens
theorem gets us

∑
n≤x

ω∗(n) = ∑
p≤x+1

⌊
x

p − 1
⌋ = x log logx +O(x).

And of course:

∑
n≤x

τ(n) = ∑
d≤x

⌊
x

d
⌋ = x logx +O(x).
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As mentioned, Hardy and Ramanujan proved that the normal
order of ω(n) is log logn. This result was greatly improved by
Erdős and Kac, who showed there is a Gaussian distribution:

#{n ≤ x ∶ ω(n) ≤ log logn + u
√

log logn} ∼
x

√
2π
∫

u

−∞
e−t

2/2dt

as x→∞. Remarkably, Halberstam proved the same result for
shifted primes:

#{p ≤ x ∶ ω(p − 1) ≤ log logp + u
√

log logp} ∼
π(x)
√

2π
∫

u

−∞
e−t

2/2dt

as x→∞.

Predating Erdős and Kac, Turán worked out the second
moment of ω(n), later generalized by Kubilius to general
additive functions:

∑
n≤x

ω(n)2 = x(log logx)2 +O(x log logx).
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The function ω∗(n), which counts the number of shifted-prime

divisors p − 1 of n, is not additive, but perhaps we have the

same theorems as with ω(n)? In particular, what can be said

about ω∗(n)2 on average?

(On the number of divisors of a natural number which have the

form p − 1.)
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Prachar showed here that

∑
n≤x

ω∗(n)2 = O(x log2x),

contrasting this with

∑
n≤x

τ(n)2 ∼
1

π2
x log3x,

an old result of Ramanujan. Also, in comparison with τ(n), he

showed that there is a positive constant c and infinitely many n

with

ω∗(n) > exp(c logn/(log logn)2),

and that assuming the RH, “(log logn)2” could be replaced with

log logn. In fact we know unconditionally after Wigert that the

maximal order of τ(n) is exp((log 2 + o(1)) logn/ log logn).
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Here a key step in proving the complexity of our algorithm was
in proving the Prachar conjecture that

ω∗(n) > exp(c logn/ log logn)

for infinitely many n. The Prachar argument was also a key
step in my paper with Alford and Granville in proving there
are infinitely many Carmichael numbers.
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But what of the second moment? Here in a brief note added in

the journal by Erdős, jointly with Prachar, the exponent 2 on

logx was sort of reduced to 1.

(On the number of solutions of [p − 1, q − 1] ≤ x.)

Why “sort of”?
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Well, they proved that the number of solutions to [p−1, q −1] ≤ x

is O(x(log logx)3) and they indicated even more briefly in a

footnote how the log log factor could be removed, using some

standard tricks and the Titchmarsh divisor problem.

What is the connection to the average of ω∗(n)2? Well, assume

that the number of solutions to [p − 1, q − 1] ≤ t is O(t). Then

∑
n≤x

ω∗(n)2 = ∑
n≤x

( ∑
p−1 ∣n

1)
2
= ∑
n≤x

∑
[p−1,q−1] ∣n

1

= ∑
[p−1,q−1]≤x

⌊
x

[p − 1, q − 1]
⌋ ≤ x ∑

[p−1,q−1]≤x

1

[p − 1, q − 1]
.

And partial summation shows the last sum is O(logx).
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What is the Titchmarsh divisor problem? This is the assertion

that (recall that τ counts the total number of divisors)

∑
p≤x

τ(p − 1) ∼ cx, x→∞

for a certain constant c > 0. So, on average, τ(p − 1) is ∼ c logx

for p ≤ x, which contrasts nicely with all integers n ≤ x, where on

average it is ∼ logx. Titchmarsh gave a GRH-conditional proof

of this in 1931, and Linnik gave a difficult, but unconditional

proof in 1963. Using the duality between a divisor d of p−1 and

its co-divisor (p − 1)/d, a quick proof can be had using the

Bombieri–Vinogradov theorem, as noted by Rodriguez in

1965 and Halberstam in 1967.

It would be nice to have a clean, self-contained proof that

ω∗(n)2, on average for n ≤ x, is O(logx). Or possibly better?
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These issues were discussed in the recent paper:

In addition to proving that ∑n≤xω∗(n)2 =O(x logx), they

conjectured that this is best possible. And they proved a

nontrivial lower bound of cx(log logx)3.
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In a very recent paper, Ding addresses this conjecture, claiming
a proof.

However, there’s a small problem with these lower bounds. In
the Murty–Murty paper we find the equation

∑
n≤x

ω∗(n)2 = ∑
[p−1,q−1]≤x

⌊
x

[p − 1, q − 1]
⌋ = ∑

p,q ≤x

x

[p − 1, q − 1]
+O(x).
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Repeating:

∑
n≤x

ω∗(n)2 = ∑
[p−1,q−1]≤x

⌊
x

[p − 1, q − 1]
⌋ = ∑

p,q ≤x

x

[p − 1, q − 1]
+O(x).

This is justified by the earlier result that the number of p, q with
[p−1, q −1] ≤ x is O(x). Yes, removing the floor symbol for terms
with [p − 1, q − 1] ≤ x creates an error of O(x), but the number of
pairs p, q that are now considered in this last sum is expanded.
And it is not clear if the extra terms have a sum that is O(x).

In fact, this is not just an error in the proof, the assertion is
incorrect as well:

Theorem (Fan, P). We have

∑
p,q ≤x

[p−1,q−1]>x

x

[p − 1, q − 1]
≫ x logx.
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Fortunately, there’s an obvious fix that saves the lower bound

arguments of Murty–Murty and Ding:

∑
n≤x

ω∗(n)2 ≥ ∑

p,q ≤
√
x

⌊
x

[p − 1, q − 1]
⌋ = ∑

p,q ≤
√
x

x

[p − 1, q − 1]
+O(x).

And from the Ding proof, this is ≫ x logx.

However, more recently, Ding (arXiv:2209.01087v1) gives a

heuristic argument for a certain constant c with

∑
n≤x

ω(n)2 ∼ cx logx,

namely c = 2ζ(2)ζ(3)/ζ(6) ≈ 3.8. This is almost certainly wrong

in view of our theorem. We believe the correct constant should

be about 3.1 and we’re working on trying to show this, at least

heuristically.
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We have tried some computing and here is what we get up to

various limits x for the sum of ω∗(n)2, and then the sum divided

by x logx.

k sum to 10k ÷10k log 10k 3 ∗ 10k log 10k − 6 ∗ 10k

2 971 2.11 782
3 15,530 2.25 14,723
4 219,128 2.38 216,310
5 2,849,311 2.47 2,853,878
6 35,261,891 2.55 35,446,532
7 421,296,839 2.61 423,542,870
8 4,902,181,351 2.66 4,926,204,223
9 56,067,311,859 2.71 56,169,797,511

10 631,033,824,202 2.74 630,775,527,898

The last column is a pure guess that seems to fit fairly well!
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Some other natural questions about ω∗(n) is how it behaves for
“most” values of n. Strangely, even though for very special
values of n, ω∗(n) is much bigger than ω(n), for most values of
n, it is quite a bit smaller; in fact it is essentially O(1).

That something like this is true can be seen already from the
obvious fact that ω∗(n) = 1 whenever n is odd (and conversely).
Beyond odd and even though, it is less clear that ω∗(n) is
usually small.

An important ingredient in showing this is a shocking (at first
sight) theorem of Erdős–Wagstaff from 1980: There is a
positive constant c such that the number of n ≤ x divisible by a
shifted prime p − 1 > y is O(x/ logc y). That is, most integers are
not divisible by any large shifted primes! In a more recent
paper, McNew, Pollack, P (2017) show that the “correct”
value of c is 1 − (1 + log log 2)/ log 2 ≈ .086.
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Already from the Erdős–Wagstaff paper we know that for

each fixed k, the set {n ∶ ω∗(n) = k} has an asymptotic density.

In fact, this density is positive, a fact that is perhaps not so

easy to prove (we used Chen’s theorem).

Theorem (Fan, P). For each positive integer k, {n ∶ ω∗(n) = k}

has a positive asymptotic density δk and ∑ δk = 1.

Note that if ω∗(n) ≥ y, then the largest shifted-prime divisor of n

is ≫ y logy, and is in particular ≥ y. So, we have the dichotomy:

For each y > 1, the set {n ∶ ω(n) ≥ y} has asymptotic density 1

while the set {n ∶ ω∗(n) ≥ y} has asymptotic density o(1) as y →∞.
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Theorem (Fan, P). For y ≥ 2, N(x,y) =O(x(logy)/y), where

N(x,y) = #{n ≤ x ∶ ω∗(n) ≥ y}.

For the proof, we may assume that y is large. Note that from

the average of ω∗(n) being O(log logx) for n ≤ x, it follows that

N(x,y) =O(x(log logx)/y). Thus, the theorem follows when

y > (logx)1/20, say.

Now assume that y ≤ (logx)1/20 and let z = exp(y19) = xo(1). If n

is divisible by a shifted prime p − 1 > z, then by the McNew,

Pollack, P theorem, the count of such numbers n is

x/(logz)β+o(1), where β = 1 − (1 + log log 2)/ log 2. Since 19β > 1,

we have (logz)β+o(1) = (logy)19β+o(1) > logy when y is large. So,

these numbers n are negligible.

19



So assume that both ω∗(n) ≥ y and that each shifted-prime
divisor of n is at most z.

Let ω∗z(n) denote the number of shifted-prime divisors p − 1 of n
with p − 1 ≤ z. The average order argument (Mertens’ theorem)
shows that ω∗z(n) is O(log logz) on average, so that the number
of n left in our count is O(x(log logz)/y). But since z = exp(y19),
we have log logz =O(logy) and we’re done.

We can also ask for a lower bound for N(x,y), the number of
n ≤ x with ω∗(n) ≥ y. Here, by considering the first integer m
with ω∗(m) ≥ y, we can show

N(x,y) >
x

yc log logy

for a positive constant c and all large y.
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Other problems to consider are estimates of the densities δk
(the density of the set of numbers n with ω∗(n) = k). Though

δk → 0 as k →∞, the sequence is likely not monotone.

On the next slide are exact counts of integers n ≤ 106,108,1010

with ω∗(n) = k for k ≤ 11. (For each k ≥ 12 there were fewer than

1% of the n’s with ω∗(n) = k.)
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k 106 108 1010 ≈ δk
1 500,000 50,000,000 5,000,000,000 .5
2 77,696 7,436,825 720,726,912 .070
3 91,602 8,826,498 859,002,140 .084
4 79,986 7,691,971 748,412,490 .074
5 59,518 5,684,323 555,900,984 .055
6 40,641 4,031,009 401,146,301 .040
7 29,565 3,016,881 300,330,932 .030
8 23,190 2,324,769 233,611,502 .023
9 17,914 1,800,298 182,793,491 .018

10 13,899 1,401,307 144,740,573 .015
11 10,487 1,131,836 118,302,267 .012

≥ 12 55,682 6,654,283 735,032,408

Exact counts of n ≤ 106,108,1010 with ω∗(n) = k

(Largest k values 106: 86, 108: 231, 1010: 519)
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Thank you
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