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A shifted prime is a number p+a, where p is prime and a is any
nonzero integer. The view is that a is fixed and p runs over
primes, so we shift the primes by a. Most questions are not too
sensitive about the choice of a, except for some obvious things.
Like: are there infinitely many shifted primes p+a that are also
prime? (Conjecturally YES if a is even. Obviously NO if a is

odd!)

In this talk we will focus on the case a=-1, that is, numbers of
the form p-1, since this case has some interesting applications.



Hardy and Ramanujan had shown that a typical integer n has
about loglogn prime factors. In the paper below of Erdos,
submitted when he was 21, he showed that most shifted primes

p—1 are like typical integers in this regard.

ON THE NORMAL NUMBER OF PRIME FACTORS
OF p—1 AND SOME RELATED PROBLEMS
CONCERNING EULER’S ¢-FUNCTION

By PAUL ERDOS (Manchester)

[Received 13 November 1934]



Erdos also gave an argument that there exist integers with an
extraordinarily large number of shifted-prime divisors. He used
this to show a fantastic result about Euler's function o:

There is a positive number ¢ such that for all large = there is a
number n < x such that the equation ¢(m)=n holds for at least
x¢ numbers m.

He conjectured this holds for every fixed ¢< 1. There's been a
long history of getting larger values of ¢, the current record
holder is Lichtman, who got ¢=.7156.



Let w(n) denote the number of primes that divide n. For

example, w(11) =1, w(12)=2, etc. We know, essentially from
Mertens that

Y wln)= > {fJ =zxloglogx + O(x).
n<x pLx

Further, let w*(n) denote the number of shifted-prime divisors

p—-1 of n. For example, w*(11)=1, w*(12) =5, etc. It might

seem perhaps that w* more resembles 7(n), the total number of

divisors of n. However, the same argument using the Mertens
theorem gets us

Y wi(n)= ) { lezwloglogx+O(a:).

n<x p<x+l -

And of course:

Y m(n)= > {fJ =xlogz + O(x).

n<x d<x d



As mentioned, Hardy and Ramanujan proved that the normal
order of w(n) is loglogn. This result was greatly improved by
Erdos and Kac, who showed there is a Gaussian distribution:

u
#{n<z:w(n)<loglogn+uy/loglogn} ~ \/Z_f %124t
T J—00

as r — oco. Remarkably, Halberstam proved the same result for
shifted primes:

m(x) (% _2/2
Hip<z:w(p-1)<loglogp+uy/loglogp} ~ f e dt
{p (p-1) p+uy/ RN
dS I — oo.
Predating Erdos and Kac, Turan worked out the second

moment of w(n), later generalized by Kubilius to general
additive functions:

> w(n)? = z(loglogz)? + O(zloglog z).

n<x



The function w*(n), which counts the number of shifted-prime
divisors p-1 of n, is not additive, but perhaps we have the
same theorems as with w(n)? In particular, what can be said
about w*(n)? on average?

Uber die Anzahl der Teiler einer natiirlichen Zahl,
welche die Form » —1 haben.

Von

K. Prachar, Wien.
( Eingelangt am 19. Oktober 1954.)

(On the number of divisors of a natural number which have the
form p-1.)



Prachar showed here that
> w*(n)? = O(z1og? z),
nix

contrasting this with

1
> (n)? ~ ﬁxIOQSQf;,

nix
an old result of Ramanujan. Also, in comparison with 7(n), he
showed that there is a positive constant ¢ and infinitely many n
with

w*(n) > exp(clogn/(loglogn)?),

and that assuming the RH, “(loglogn)?” could be replaced with
loglogn. In fact we know unconditionally after Wigert that the
maximal order of 7(n) is exp((log2+o0(1))logn/loglogn).



Annals of Mathematics, 117 (1983), 173-206

On distinguishing prime numbers from
composite numbers

By LEoNARD M. ADLEMAN,* CARL POMERANCE,* AND ROBERT S. RUMELY*

Here a key step in proving the complexity of our algorithm was
in proving the Prachar conjecture that

w*(n) >exp(clogn/loglogn)

for infinitely many n. The Prachar argument was also a key
step in my paper with Alford and Granville in proving there
are infinitely many Carmichael numbers.



But what of the second moment? Here in a brief note added in
the journal by Erdos, jointly with Prachar, the exponent 2 on
log x was sort of reduced to 1.

Uber die Anzahl der Losungen von [p—1,¢—1]< =z

(Aus einem Brief von P, Erdis an K, Prachar)!

(Eingelangt am 18, Mai 1955.)

(On the number of solutions of [p-1,q-1]<x.)

Why “sort of’?



Well, they proved that the number of solutions to [p-1,q-1]<x
is O(z(loglogx)3) and they indicated even more briefly in a
footnote how the loglog factor could be removed, using some
standard tricks and the Titchmarsh divisor problem.

What is the connection to the average of w*(n)2? Well, assume
that the number of solutions to [p-1,q-1]<t is O(t). Then

S-S (1) -% ¥ 1

n<x n<T p-1|n nsr[p-1,g-1]|n

T 1
= < .
Z \{p—l,q—l]J Z [p_laq_l]

[p—]_,q—].]SCC [p—l,q—l]gx
And partial summation shows the last sum is O(log ).
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What is the Titchmarsh divisor problem? This is the assertion
that (recall that = counts the total number of divisors)

Y 7(p-1)~ecx, x>0

pLx

for a certain constant ¢>0. So, on average, 7(p-1) is ~clogzx
for p <x, which contrasts nicely with all integers n <x, where on
average it is ~logx. Titchmarsh gave a GRH-conditional proof
of this in 1931, and Linnik gave a difficult, but unconditional
proof in 1963. Using the duality between a divisor d of p—1 and
its co-divisor (p—-1)/d, a quick proof can be had using the
Bombieri—Vinogradov theorem, as noted by Rodriguez in
1965 and Halberstam in 1967.

It would be nice to have a clean, self-contained proof that
w*(n)?2, on average for n<z, is O(logz). Or possibly better?
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T hese issues were discussed in the recent paper:

Hardy-Ramanujan Journal 44 (2021), xx-xx submitted 07/03/2021, accepted 06/06/2021, revised 07/06/2021

A variant of the Hardy-Ramanujan theorem

M. Ram Murty and V. Kumar Murty*

In addition to proving that ¥,<, w*(n)? = O(zlogz), they
conjectured that this is best possible. And they proved a
nontrivial lower bound of cz(loglogz)3.
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In a very recent paper, Ding addresses this conjecture, claiming
a proof.

Canad. Math. Bull. Vol. 66 (2), 2023, pp. 679-681
http://dx.doi.org/10.4153/5S0008439522000650

© The Author(s), 2022. Published by Cambridge University Press on behalf of The
Canadian Mathematical Society

On a conjecture of M. R. Murty and
V. K. Murty

Yuchen Ding

However, there's a small problem with these lower bounds. In
the Murty—Murty paper we find the equation

R M (e et ] R e )

n<w [p-1,g-1]<z p-1,q-1] p,qgw[p_laq_l]
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Repeating:

w*(n)? = v ‘: * +O(x).
nzs:as ( ) [p1,§1]<${[p_17q_1] p,qzéaz[p_laq_l] ( )
This is justified by the earlier result that the number of p,q with
[p-1,q-1] <z is O(z). Yes, removing the floor symbol for terms
with [p-1,9- 1] <x creates an error of O(x), but the number of
pairs p,q that are now considered in this last sum is expanded.
And it is not clear if the extra terms have a sum that is O(z).

In fact, this is not just an error in the proof, the assertion is
incorrect as well:

Theorem (Fan, P). We have

T
> x log x.
p,qzéx [p-1,q-1]

[p_laq_l] >
14



Fortunately, there's an obvious fix that saves the lower bound
arguments of Murty—Murty and Ding:

* 2 v = r +O(x).
2, @7z ), Lp—l,q—u“ L [poiq-1 0@

nsx P,g</x p,g</x

And from the Ding proof, this is > xlogwx.

However, more recently, Ding (arXiv:2209.01087v1) gives a
heuristic argument for a certain constant ¢ with

> w(n)? ~ cxlogz,

n<x

namely c¢=2¢(2)¢(3)/((6) »3.8. This is almost certainly wrong

in view of our theorem. We believe the correct constant should
be about 3.1 and we're working on trying to show this, at least

heuristically.
15



We have tried some computing and here is what we get up to
various limits x for the sum of w*(n)2, and then the sum divided
by xlogx.

k sum to 10% | +10Flog 10F | 3 % 10%log 10% — 6 » 10%
2 o971 2.11 782
3 15,530 2.25 14,723
4 219,128 2.38 216,310
5 2,849,311 2.47 2,853,878
6 35,261,891 2.55 35,446,532
7 421,296,839 2.61 423,542,870
8 4,902,181,351 2.66 4,926,204,223
9| 56,067,311,859 2.71 56,169,797,511
10 | 631,033,824,202 2.74 630,775,527,898

The last column is a pure guess that seems to fit fairly well!
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Some other natural questions about w*(n) is how it behaves for
“most” values of n. Strangely, even though for very special
values of n, w*(n) is much bigger than w(n), for most values of
n, it is quite a bit smaller; in fact it is essentially O(1).

That something like this is true can be seen already from the
obvious fact that w*(n) =1 whenever n is odd (and conversely).
Beyond odd and even though, it is less clear that w*(n) is
usually small.

An important ingredient in showing this is a shocking (at first
sight) theorem of Erd6s—Wagstaff from 1980: There is a
positive constant ¢ such that the number of n <x divisible by a
shifted prime p-1>y is O(xz/log®y). That is, most integers are
not divisible by any large shifted primes! In a more recent
paper, McNew, Pollack, P (2017) show that the “correct”
value of cis 1 -(1+loglog2)/log2 ~.086.

17



Already from the Erdos—Wagstaff paper we know that for
each fixed k, the set {n:w*(n) =k} has an asymptotic density.
In fact, this density is positive, a fact that is perhaps not so
easy to prove (we used Chen’s theorem).

Theorem (Fan, P). For each positive integer k, {n:w*(n) =k}
has a positive asymptotic density o, and ) o, =1.

Note that if w*(n) >y, then the largest shifted-prime divisor of n
is > ylogy, and is in particular >y. So, we have the dichotomy:

For each y>1, the set {n:w(n) >y} has asymptotic density 1
while the set {n:w*(n) >y} has asymptotic density o(1) as y — oo.

18



Theorem (Fan, P). Fory>2, N(x,y) =O(x(logy)/y), where
N(z,y) =#{n<z:w*(n) 2y}

For the proof, we may assume that y is large. Note that from
the average of w*(n) being O(loglogzx) for n <z, it follows that
N(x,y) =0O(z(loglogx)/y). Thus, the theorem follows when

y > (logx)1/20, say.

Now assume that y < (logz)1/20 and let z = exp(y19) = z°(1). If n
is divisible by a shifted prime p-1 >z, then by the McNew,
Pollack, P theorem, the count of such numbers n is

z/(log z)B+o(1) 'where B=1-(1+loglog2)/log2. Since 198> 1,
we have (log z)#+o(1) = (log y)196+o(1) > logy when vy is large. So,
these numbers n are negligible.

19



So assume that both w*(n) >y and that each shifted-prime
divisor of n is at most z.

Let wi(n) denote the number of shifted-prime divisors p—-1 of n
with p-1<z. The average order argument (Mertens’' theorem)
shows that w}(n) is O(loglogz) on average, so that the number
of n left in our count is O(z(loglog z)/y). But since z = exp(yl9),
we have loglogz =0O(logy) and we're done.

We can also ask for a lower bound for N(z,y), the number of
n <x with w*(n) >y. Here, by considering the first integer m
with w*(m) >y, we can show

x

N(w, y) > yclog log y

for a positive constant ¢ and all large y.
20



Other problems to consider are estimates of the densities 9,
(the density of the set of numbers n with w*(n)=%k). Though
0. - 0 as k — oo, the sequence is likely not monotone.

On the next slide are exact counts of integers n < 100,108, 1010
with w*(n)=k for k<11. (For each k> 12 there were fewer than
1% of the n's with w*(n) =k.)
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k 106 108 1010 | &~ 6
1 | 500,000 | 50,000,000 | 5,000,000,000 5
2| 77,696 | 7,436,825 | 720,726,912 | .070
3| 91,602 | 8,826,498 | 859,002,140 | .084
4| 79,986 | 7,691,971 | 748,412,490 | .074
5| 59,518 | 5,684,323 | 555,900,984 | .055
6| 40,641 | 4,031,009 | 401,146,301 | .040
7| 29,565 | 3,016,881 | 300,330,932 | .030
8| 23,190 | 2,324,769 | 233,611,502 | .023
9| 17,914 | 1,800,298 | 182,793,491 | .018
10| 13,899 | 1,401,307 | 144,740,573 | .015
11| 10,487 | 1,131,836 | 118,302,267 || .012
>12 | 55,682 | 6,654,283 | 735,032,408

Exact counts of n<10°,108,1010 with w*(n) =k
(Largest k values 10°: 86, 108: 231, 1010: 519)
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T hank you
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