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Abstract
We study the distribution of solutions n to the congruence σ(n) ≡ a (mod n). After
excluding obvious families of solutions, we show that the number of these n ≤ x is
at most x1/2+o(1), as x → ∞, uniformly for integers a with |a| ≤ x1/4. As a concrete
example, the number of composite solutions n ≤ x to the congruence σ(n) ≡ 1 (mod n)
is at most x1/2+o(1). These results are analogues of theorems established for the Euler
ϕ-function by the third-named author.

1. Introduction

In this paper, we continue the investigations of the third-named author [Pom75, Pom76,
Pom77] into the congruences

n ≡ a (mod ϕ(n)) (1.1)

and
σ(n) ≡ a (mod n). (1.2)

These congruences have connections to various unsolved problems in number theory.
Most prominent among these is Lehmer’s question [Leh32] of whether there are any
composite solutions to (1.1) when a = 1. We also note here the many classical problems
concerning multiply perfect numbers, which are those n satisfying (1.2) with a = 0.

It is observed in [Pom75] that for both (1.1) and (1.2), there is a natural classification
of solutions as either regular or sporadic. For (1.1), there are no regular solutions unless
a > 0 and ϕ(a) | a; in that case, we define a regular solution as a number n of the form
pa, where p is a prime not dividing a. By a regular solution to (1.2), we mean a natural
number n of the form

n = pm, where p - m, m | σ(m), and σ(m) = a. (1.3)

(It is straightforward to check that these “regular solutions” really are solutions.) In
both cases, all other solutions are called sporadic. From the prime number theorem, it
is easily seen that if there are any regular solutions to (1.1) or (1.2), then the number
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of such up to x is � x
log x

for large x. In [Pom75, Theorem 3], it is shown that sporadic
solutions are much rarer: For any fixed a, the number of sporadic solutions to either
(1.1) or (1.2) is at most

x/ exp

((
1√
2

+ o(1)

)√
log x log log x

)
, as x→∞. (1.4)

For solutions to the ϕ-congruence (1.1), the upper bound (1.4) has seen substantial
improvement, first to x2/3+o(1) [Pom76] and soon after to x1/2+o(1) [Pom77] (both results
are again for fixed a). There has been a fair amount of work chipping away at the size
of the o(1)-term in the exponent of this last result [Sha85, BL07, BGN08, LP], but a
new idea will be required to replace 1

2
with anything smaller.

All of the results of the last paragraph apply only to (1.1) and not the σ-version
(1.2). The behavior of the Euler ϕ-function on prime powers is much simpler than that
of σ, and complications arise if one tries to mimic the arguments of [Pom76, Pom77].
Recently, the second-named author and V. Shevelev described how to overcome these
difficulties for the arguments of [Pom76], proving that the sporadic solutions in [1, x]
to (1.2) number at most x2/3+o(1) [PS, Lemma 8]. (In fact, their result is uniform for
|a| < x2/3.) The purpose of this note is to reduce the exponent 2

3
to 1

2
.

Theorem 1. As x → ∞, the number of sporadic solutions n ≤ x to the congruence
(1.2) is at most

A(a)x1/2 exp

(
(2 + o(1))

√
log x

log log x

)
, (1.5)

uniformly in integers a with |a| ≤ x1/4. Here A is defined by A(0) := 1 and, for a 6= 0,

A(a) :=
∏
pb‖a

(
1 +

b2 + b

2

)
. (1.6)

Remark 1. The factor A in (1.5) is fairly tame, displaying similar behavior to the number
of divisors of a. In particular, a theorem of Drozdova and Frĕıman [DF58] (see also
[Pos88, Chapter 4]) yields

A(a) ≤ exp

(
(log 2 + o(1))

log |a|
log log |a|

)
, as |a| → ∞.

(This should be compared with [HaWr08, Theorem 317, p. 345], where the same in-
equality is proved for the usual divisor function.) Hence, the bound (1.5) is indeed of
the shape x1/2+o(1), uniformly for |a| ≤ x1/4. Thus (apart from secondary terms), (1.2)
is no longer a second-class citizen compared to (1.1); both congruences are now on the
same theoretical footing.

It seems plausible that the upper bound (1.5) can be replaced with a bounded power
of log x, even in the wider range |a| ≤ x/2. See Remark 3(i) at the end of this paper. If
this is correct, we have a long way to go!

We mention briefly an application of Theorem 1 to a problem considered in [PS]. Call
a natural number n a near-perfect number if n is the sum of all of its proper divisors
with one exception. In other words, n is near-perfect if σ(n) = 2n + d for some proper
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divisor d of n. Using Theorem 1, we can show that the number of near-perfect n ≤ x
is at most x3/4+o(1), as x → ∞. This result with exponent 5

6
appeared as Theorem 5

of [PS]. We omit the proof of our improvement, which essentially amounts to replacing
[PS, Lemma 8] with the estimate (1.5).

Notation

As above, we employ the Landau–Bachmann o and O symbols, as well as Vinogradov’s
� notation, with their usual meanings. All of our implied constants are absolute.
The letter p, with or without subscripts, always denotes a prime variable. We write
π(x) =

∑
p≤x 1 for the number of primes not exceeding x. We say that d is a unitary

divisor of n if d divides n and gcd(d, n/d) = 1. If p is a prime, the notation pe ‖ n means
that pe | n but that pe+1 - n. The number of divisors of n is denoted τ(n). We use
ω(n) for the number of distinct prime divisors of n and Ω(n) for the number of primes
dividing n counted with multiplicity; thus, ω(n) =

∑
p|n 1 and Ω(n) =

∑
pk|n 1. We write

rad(n) for the radical of n, that is, the product of the distinct primes dividing n. We
use P (n) to denote the largest prime factor of n, with the convention that P (1) = 1.

2. Preparation

For the reader’s convenience, we record here some simple inequalities for the abundancy
ratio σ(n)

n
.

Lemma 2. All of the following hold:

(i) For all integers n ≥ 1, we have σ(n)
n
≤ 1 + log n.

(ii) If d divides n, then σ(d)
d
≤ σ(n)

n
, with equality only if d = n.

(iii) If p1 is the least prime dividing n, then σ(n)
n
≤
(

p1
p1−1

)ω(n)
.

Proof. Both (i) and (ii) follow from the representation σ(n)
n

=
∑

d|n
1
d
; we also use that∑

d|n
1
d
≤
∑

d≤n
1
d
≤ 1 +

∫ n
1

dt
t

= 1 + log n. For (iii), we observe that

σ(n)

n
=
∏
pe‖n

(
1 +

1

p
+

1

p2
+ . . .

)
≤
∏
p|n

p

p− 1
≤
(

p1
p1 − 1

)ω(n)
.

We also need a technical lemma from the “anatomy of integers” concerning numbers
n ≤ x with small radical. The next result is due to de Koninck and Doyon (compare
with [DKD03, Théorème 4]).

Lemma 3. For each fixed z ≥ 1, we have (as x→∞)

∑
d≤x1/z

∑
e≤x

d|e, rad(e)=rad(d)

1 ≤ x1/z exp

(
(2 + o(1))

√
2(1− 1/z) log x

log log x

)
.
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Actually, de Koninck and Doyon prove the upper bound of Lemma 3 for the number
of n ≤ x with rad(n) < n1/z, which is a smaller quantity than that considered in Lemma
3. However, the first step in their proof (see [DKD03, eq. (19)]) is to bound that above
by the double-sum ∑

d<x1/z

∑
m<x/d, rad(m)|d

1.

Setting e = md, one can easily check that this double sum coincides with the quantity
considered in our Lemma 3 (up to the inconsequential replacement of strict inequalities
with non-strict ones). The rest of the proof of Lemma 3 follows the argument of de
Koninck and Doyon.

In the remainder of this section, we show that a large, sporadic solution n ≤ x to the
congruence (1.2) has a divisor close to

√
x. The proofs are modeled on those of [Pom77].

We begin by quoting that paper’s Lemma 4.

Lemma 4. Suppose that δ ≥ 0, and that 0 ≤ a1 ≤ a2 ≤ · · · ≤ at, where

ai+1 ≤ δ +
i∑

j=1

aj for 1 ≤ i ≤ t− 1.

Then for any ρ with 0 ≤ ρ <
∑t

i=1 ai, there is a subset I of {1, 2, 3, . . . , t} for which

ρ− δ − a1 <
∑
i∈I

ai ≤ ρ.

The following lemma establishes the σ-analogues of the assertions of [Pom77, Lemma
2(i)-(iii)]:

Lemma 5. Suppose a 6= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Then all of the following hold:

(i) k := σ(n)−a
n

is an integer at least 2,

(ii) if d is a unitary divisor of n with d < n, then σ(d)
d
< k,

(iii) there is a prime q > P (n) with σ(nq)
nq

> k.

Proof. Since kn+ a = σ(n) ≥ n > |a|, clearly k ≥ 1. Suppose for the sake of contradic-
tion that k = 1. If n is composite with smallest prime factor p, then

a = σ(n)− n =
∑

d|n, d<n

d ≥ n/p ≥
√
n > |a|,

which is absurd. So n is prime and a = σ(n) − n = 1. But prime values of n are
regular solutions to the congruence σ(n) ≡ 1 (mod n) (satisfying (1.3) with m = 1), not
sporadic solutions. This proves (i).

We turn now to (ii). If a < 0, then σ(d)
d
≤ σ(n)

n
= k + a/n < k, and so (ii) is trivial.

So we may assume that a > 0. Now if d is a unitary divisor of n with d < n, then d
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divides n/pe for some prime power pe ‖ n. By Lemma 2(ii), we may restrict attention
to the case when d = n/pe. In this case,

a = σ(n)− kn = σ(pe)σ(d)− kdpe

= (pe + σ(pe−1))σ(d)− kdpe = pe(σ(d)− kd) + σ(pe−1)σ(d),

and so

σ(d)− kd =
a− σ(pe−1)σ(d)

pe
. (2.1)

Let us show that the right-hand side of (2.1) is negative. This is easy if e > 1; then

σ(pe−1)σ(d) ≥ pe−1d ≥ (ped)1/2 = n1/2 > a,

and so we have (ii) in this case. Suppose e = 1. If d > a, then the right-hand side of
(2.1) is again negative, and so we again have (ii). So we can assume that d ≤ a. Since
n = pd > a2, we must have p > a. But then the right-hand side of (2.1) is smaller than
1, and hence 0 or negative (since the left-hand side of (2.1) is an integer). But it cannot
equal zero, since otherwise σ(d) = a = kd, making n = pd a regular solution to (1.2)
instead of a sporadic solution. This completes the proof of (ii).

Finally, we prove (iii). If a > 0, then we can take any prime q > P (n). So we suppose
that a < 0. Let p := P (n) be the largest prime factor of n. We will show below that
p ≤ n

2|a| . Assuming this for now, we can take q to be any prime in the interval (p, 2p].

(Such a choice exists by Bertrand’s postulate.) Indeed, since q ≤ n
|a| , we have

σ(nq)

nq
=
(
k +

a

n

)(
1 +

1

q

)
≥ k

(
1− |a|

nk

)(
1 +
|a|
n

)
= k +

|a|k
n

(
1− 1

k
− |a|
nk

)
.

Since |a| < n and k ≥ 2 (by part (i) of the lemma), the final parenthesized expression is

positive, and so σ(nq)
nq

> k, as desired.
It remains to prove the upper bound on p. Suppose instead that p > n

2|a| . Write

n = ped, where pe ‖ n. Since n > 4|a|2, we have p >
√
n, and so e = 1. By (ii), we know

that kd− σ(d) ≥ 1, so that from (2.1) and Lemma 2(i),

p =
σ(d)− a
kd− σ(d)

≤ |a|+ σ(d) ≤ |a|+ d(1 + log d) ≤ |a|+ 2|a|(1 + log (2|a|)),

using d = n/p < 2|a|. It follows that

n = pd < 2a2 + 4a2(1 + log (2|a|))
< 6a2(1 + log (2|a|)) < 6a2 log (6|a|).

But this contradicts the lower bound on n assumed in the lemma statement.

Lemma 6. Suppose a 6= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Write

n = p1p2 · · · pt, where p1 ≤ p2 ≤ p3 ≤ · · · ≤ pt.

For 0 ≤ i ≤ t− 1, we have

pi+1 ≤ ∆p1 · · · pi, where ∆ := 8(log n)2. (2.2)
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Proof. With k ≥ 2 as in the statement of Lemma 5(i), fix a prime q > P (n) so that
σ(nq)
nq

> k, and put N := nq. Now let 0 ≤ i ≤ t − 1. If pi+1 = pi, then the desired

inequality (2.2) is obvious (since ∆ ≥ 1), and so we can assume that pi+1 > pi. Then
d := p1 · · · pi is a unitary divisor of N and the least prime factor of N/d is pi+1. Recalling
Lemma 2(iii), we see that

k <
σ(N)

N
=
σ(d)

d

σ(N/d)

N/d
≤ σ(d)

d

(
pi+1

pi+1 − 1

)ω(N/d)
.

Rearranging this inequality, we find that

1− ω(N/d)

pi+1

≤
(

1− 1

pi+1

)ω(N/d)
≤ σ(d)

kd
,

which after some manipulation shows that

pi+1 ≤ ω(N/d)

(
1− σ(d)

kd

)−1
= ω(N/d)

kd

kd− σ(d)
≤ ω(N/d)kd. (2.3)

(For the last inequality, we use that kd − σ(d) ≥ 1, as established in Lemma 5(ii).)
Moreover, using the crude bound ω(n) ≤ Ω(n) ≤ logn

log 2
and Lemma 2(i), we have

ω(N/d)k ≤ (1 + ω(n))k ≤
(

1 +
log n

log 2

)(
σ(n)

n
+
|a|
n

)
≤
(

1 +
log n

log 2

)
(2 + log n) < 8(log n)2 = ∆.

(The last inequality here follows from a simple calculation, using that log n > 1.) Since
d = p1 · · · pi, the desired inequality (2.2) now follows from (2.3).

Lemma 7. Suppose a 6= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Let x > 1, and suppose that n ∈ (x1/2, x]. Then there
is a divisor d of n with

x1/2

64(log x)4
< d ≤ x1/2. (2.4)

Proof. Write n = p1 · · · pt, with p1 ≤ p2 ≤ · · · ≤ pt. Let ai = log pi for 1 ≤ i ≤ t. Set
δ := log (8(log x)2). Then from (2.2), we have

ai+1 ≤ δ +
i∑

j=1

aj for 0 ≤ i ≤ t− 1.

In particular, taking i = 0, we see that a1 ≤ δ. Applying Lemma 4, we obtain the
existence of a subset I ⊂ {1, 2, . . . , t} with

(log
√
x)− 2δ <

∑
i∈I

log ai ≤ log
√
x.

Exponentiating now gives the desired result.

Remark 2. More generally, for any 1 ≤ y ≤ x1/2, the method of proof of Lemma 7 shows
that n has a divisor in the interval (y/(64(log x)4), y]. Thus, the divisors of n are dense,
in the sense of Saias [Sai97]. We will only need the case y = x1/2, however.
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3. Proof of Theorem 1

Proof of Theorem 1. If a = 0, then the n satisfying (1.2) are precisely the multiply
perfect numbers. According to a theorem of Hornfeck and Wirsing [HoWi57, Satz 2],
the number of these n ≤ x is xo(1), as x → ∞, which is a much stronger bound than
what is claimed in Theorem 1. So we can assume that a 6= 0. We can also assume that

n > max{x1/2, 6a2 log(6|a|)};

indeed, since |a| ≤ x1/4, this inequality excludes � x1/2 log x values of n, which is
acceptable. So by Lemma 7, there is a divisor d of n satisfying (2.4). Given d, let e be
the (unique) unitary divisor of n with rad(e) = rad(d); note that d | e. Since e | n and
σ(e) | σ(n), (1.2) implies the simultaneous congruences

σ(n) ≡ a (mod e) and σ(n) ≡ 0 (mod σ(e)).

By the Chinese remainder theorem, σ(n) belongs to a uniquely determined residue class
modulo lcm[e, σ(e)]. Since σ(n) ≤ n(1 + log n) ≤ 2x log x, the number of possibilities for
σ(n), given d and e, is at most

2x log x

lcm[e, σ(e)]
+ 1.

Now we sum over the possible pairs d, e. Since d ≤ x1/2, d | e, and rad(e) = rad(d),
we obtain from Lemma 3 (with z = 2) that

∑
d,e

(
2x log x

lcm[e, σ(e)]
+ 1

)
≤
∑
d,e

2x log x

lcm[e, σ(e)]
+ x1/2 exp

(
(2 + o(1))

√
log x

log log x

)
. (3.1)

The second right-hand term is acceptable for us, and so we concentrate on estimating
the remaining double sum. Writing lcm[e, σ(e)] = eσ(e)

gcd(e,σ(e))
, we see that

∑
d,e

2x log x

lcm[e, σ(e)]
≤ 2x log x

∑
d,e

gcd(e, σ(e))

e2
. (3.2)

Since σ(n) ≡ a (mod n) and gcd(e, σ(e)) divides both σ(n) and n, it must be that
gcd(e, σ(e)) divides a. Moreover, if we define an arithmetic function τ ′ by setting

τ ′(m) :=
∑
g|m

rad(g)=rad(m)

1,

then given e, there are only τ ′(e) possibilities for d. Hence, writing u = gcd(e, σ(e)) and
e = uf ,∑

d,e

gcd(e, σ(e))

e2
≤
∑
u|a

u
∑

x1/2

64u(log x)4
<f≤x/u

τ ′(uf)

(uf)2
≤
∑
u|a

τ ′(u)

u

∑
x1/2

64u(log x)4
<f≤x/u

τ(f)

f 2
. (3.3)

(To see the last inequality, observe that every divisor of uf with the same radical as uf
can be written as the product of a divisor of u with the same radical as u, multiplied
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by a divisor of f , so that τ ′(uf) ≤ τ ′(u)τ(f).) Let S(t) :=
∑

m≤t τ(m). It is well-known
(see, for example, [HaWr08, Theorem 18, p. 347]) that S(t)� t log t. Hence,∑

x1/2

64u(log x)4
<f≤x/u

τ(f)

f 2
≤
∫ ∞

x1/2

64u(log x)4

dS(t)

t2
�
∫ ∞

x1/2

64u(log x)4

log t

t2
dt� ux−1/2(log x)5.

Referring back to (3.3), we see that the sum appearing on the right-hand side of (3.1)
is � x1/2(log x)6

∑
u|a τ

′(u). Since τ ′ is multiplicative,

∑
u|a

τ ′(u) =
∏
pb‖a

(
b∑

j=0

τ ′(pj)

)

=
∏
pb‖a

(
1 +

b2 + b

2

)
= A(a).

Taking stock, we have shown that the number of possibilities for σ(n) is

� A(a)x1/2(log x)6 + x1/2 exp

(
(2 + o(1))

√
log x

log log x

)
,

which we recognize as being bounded by (1.5).

Write σ(n) = kn + a, so that n is determined by σ(n) and k. With k = σ(n)−a
n

, we
have by Lemma 2(i) and Lemma 5(i) that

2 ≤ k ≤ σ(n)

n
+ 1 ≤ 2 + log n ≤ 2 + log x,

and so there are O(log x) possibilities for k. It follows that the number of possibilities
for n is also bounded by (1.5).

Remark 3.

(i) Let Sa(x) denote the number of solutions to (1.2) with n ≤ x, and write Sa(x) =
S ′a(x) + S ′′a(x), where S ′a(x) counts regular solutions and S ′′a(x) counts sporadic
ones. We have∑

|a|≤x/2

Sa(x) =
∑
n≤x

∑
|a|≤x/2

a≡σ(n) (mod n)

1 =
∑
n≤x

(x
n

+O(1)
)

= x log x+O(x). (3.4)

On the other hand, recalling the definition (1.3) of a regular solution, we see that∑
|a|≤x/2

S ′a(x) ≤
∑
|a|≤x/2

∑
m|σ(m)
σ(m)=a

π(x/m)

≤
∑
m≤x/2
m|σ(m)

π(x/m)� x

log x

∑
m≤
√
x

m|σ(m)

1

m
+ x

∑
m>
√
x

m|σ(m)

1

m
.
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Using partial summation in combination with the upper bound of Hornfeck and
Wirsing [HoWi57, Satz 2] alluded to above, the first of the two remaining sums
is absolutely bounded, while the latter is at most x−1/2+o(1), as x → ∞. Hence,∑
|a|≤x/2 S

′
a(x) � x/ log x. Combining this with (3.4), we obtain an asymptotic

result on the average number of sporadic solutions:

1

x

∑
|a|≤x/2

S ′′a(x) = log x+O(1).

This motivates the conjecture, already appearing in the introduction, that S ′′a(x) ≤
(log x)O(1) whenever x ≥ 3 and |a| ≤ x/2.

(ii) Since the issue of uniformity seems to have been neglected in prior studies of the
ϕ-congruence (1.1), we point out that the proof of Theorem 1 can be adapted
to establish an upper bound of the form τ(|a|)x1/2(log x)O(1) for the number of
sporadic solutions n ≤ x to (1.1), uniformly for 0 < |a| ≤ x1/4.
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[DF58] A. A. Drozdova and G. A. Frĕıman, The estimation of certain arithmetic
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