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Abstract

A positive integer n is called cyclic if there is a unique group of order n, which is
necessarily cyclic. Using a characterisation of the cyclic integers as those n satis-
fying gcd(n, ϕ(n)) = 1, P. Erdős (1947) proved that the number of cyclic integers
n ≤ x is asymptotic to z(x) = e−γ x

log log log x , as x → ∞, where γ is Euler’s con-

stant. An ordered pair of integers (m,n) is called singular if gcd(m,ϕ(n)) = 1 and
gcd(n, ϕ(m)) = 1, a concept which is relevant to pairwise products of cyclic groups
and to embeddings of complete bipartite graphs. In this note we show that the
number of singular pairs of integers (m,n), m,n ≤ x, is asymptotic to z(x)2.

1. Introduction

Say a positive integer n is cyclic if there is just one group, up to isomorphism, of

order n, which of course is necessarily cyclic. A number-theoretic characterisation

of cyclic integers is given by the following theorem.

Theorem 1.1. [17] The positive integer n is cyclic if and only if n and ϕ(n) are

coprime.

Here, ϕ is Euler’s totient function. Theorem 1.1 has some history. According to

our knowledge it first appears explicitly in a paper by Szele [17] published in 1947.

In 1992 another simple proof of Theorem 1.1 was published in [9]. There are signs

that the result was known to Burnside and Hölder already around the year 1900, for

instance it appears as an exercise in the monograph by Robinson [16, 10.1, Exercise

12] attributed to Burnside. Moreover, in 1885 Hölder in [7] proved that the number
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of groups of squarefree order n is given by

g(n) =
∑
d|n

∏
p|d

pνp(n/d) − 1

p− 1
,

where the product is over the primes p dividing d, and νp(m) is the number of

primes ≡ 1 (mod p) dividing m. Theorem 1.1 follows immediately. Indeed, for n

squarefree, since the summand with d = 1 always contributes 1 to the sum (as an

empty product), we have g(n) = 1 exactly when the other terms are all 0, which

occurs exactly when gcd(n, ϕ(n)) = 1. Further if n is not squarefree, one can easily

construct a group of order n that is not cyclic.

Another related result was proved by Dickson [1] in 1905, where he characterised

the integers n such that all groups of order n are abelian. This result can be found

in papers by Szep [18] and Rédei [16] as well. In particular, the abelian criterion

is that n is cube-free and for pkq | n with p, q primes, we have q - pk − 1. A

result of G. Padzerski [12] from 1959 further characterises those numbers n such

that every group of order n is nilpotent: Such n satisfy the same condition as the

abelian condition without the requirement that n be cube-free. Also see Müller [11]

for more in this vein.

Erdős proved in [2] that the number of cyclic integers is asymptotically z(x) :=

e−γx/log log log x, where γ is Euler constant. Call a positive integer n abelian

(nilpotent), if every group of order n is abelian (nilpotent). It is interesting that

the number of abelian n ≤ x is also ∼ z(x) and the same is true for the number of

nilpotent n ≤ x, even though there are more of these integers than there are cyclic

integers. Erdős and Mays [3] found asymptotics for the number of abelian n ≤ x

that are not cyclic and also for the number of nilpotent n ≤ x that are not abelian.

The cyclic integers were rediscovered in the context of topological graph the-

ory [8], where it was proved that the complete bipartite graph Kn,n has a unique

regular embedding into an orientable surface if and only if n is cyclic. Here, a

2-cell embedding of a graph into an orientable surface is regular if the group of

orientation-preserving automorphisms is regular on the set of arcs.

We discuss some of these terms. In topological graph theory a graph is usually

considered as a 1-dimensional cell complex. An embedding i : G→ S of a connected

graph G into a closed orientable surface S is cellular, if each component of S \ i(G)

is homeomorphic to an open disc. A graph automorphism that extends to a self-

homeomorphism of S preserving the embedded graph is an automorphism of the

embedding. An embedding of a graphG is edge-transitive if the group of orientation-

preserving automorphisms acts transitively on the edges of G. The embedding is

regular if the group of orientation-preserving automorphisms is regular on the set

of arcs of G.

The main topic of this note is the concept of a singular pair. An ordered pair

of positive integers (m,n) is singular if gcd(m,ϕ(n)) = gcd(n, ϕ(m)) = 1. Observe
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that the pair (n, n) is singular if and only if n is cyclic. Generalizing the result

of [8] mentioned above about embeddings of Kn,n, Fan and Li [4] proved that

the complete bipartite graph Km,n has a unique edge-transitive embedding into

an orientable surface if and only if the pair (m,n) is singular. Independently, the

following statement was proved in [5].

Theorem 1.2. [5] Let m and n be positive integers. Then the following statements

are equivalent:

1. the pair (m,n) is singular,

2. every product of disjoint cyclic groups Cm and Cn of orders m and n is the

direct product Cm × Cn,

3. every product of cyclic groups of orders m and n is abelian,

4. the complete bipartite graph Km,n admits a unique edge-transitive embedding

into an orientable surface.

Recall that a group G is a product of groups A and B, G = AB, if for every

g ∈ G there exist a ∈ A and b ∈ B such that g = ab. Two subgroups A and B of G

are disjoint if A ∩B = {1}.
We will prove in the next section that the number of singular pairs (m,n) with

m,n ≤ x is ∼ z(x)2 as x→∞.

Remark 1.3. Cellular embeddings of bipartite bicoloured graphs into orientable

surfaces form a combinatorial counterpart to algebraic curves defined by polyno-

mial equations in two complex variables. In the context of algebraic geometry

Grothendieck called such maps “dessins d’enfant”. The correspondence between

the dessins and algebraic curves is explained by a non-trivial Bely̆ı theorem, see [10]

for details. If m = n the unique embedding of Kn,n in Theorem 1.2(4) corresponds

to the famous Fermat curve defined by the equation xn + yn = 1.

2. Main result

In this section we are concerned with the number of singular pairs with m,n ≤ x.

The problem of determining this number was mentioned by G. Jones in a personal

communication with one of the authors. Let x be a large number, and let

y = y(x) = log log x,

z = z(x) = e−γx/ log y, where γ is Euler’s constant,

ε = ε(x) = 1/ log log y.

Observe that the Erdős result [2] can be stated as follows: the number of cyclic

integers ≤ x is ∼ z as x→∞. We prove the following theorem.
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Theorem 2.1. The number of singular pairs (m,n) with m,n ≤ x is ∼ z2 as

x→∞.

When we use O-notation, the implied constant is assumed to be absolute. We

let p, q, r denote primes.

Proof. We shall use a few results about primes in residue classes.

1. If a,m are integers with m > 0 and gcd(a,m) = 1, then∑
p≤x

p≡ a (mod m)

1

p
=

y

ϕ(m)
+O(1).

2. If a,m are as above, then∑
n≤x

p |n =⇒ p 6≡ a (mod m)

1 = O

(
x exp

(
− y

ϕ(m)

))
.

3. If a,m are as above, then ∑
|a|<p≤x

p≡ a (mod m)

1

p
= O

(
y

ϕ(m)

)
.

The first of these results with a non-uniform O-constant is already implicit in the

work of Dirichlet (see [13, Prop. 5]). The version here, where the O-constant is

uniform, can be found, for example, in [14, Theorem 1]. The second item follows as

a consequence of the first item and from Brun’s method, see [6, Theorem 2.2]. The

Brun–Titchmarsh inequality is used for the third statement; or see [14, Remark 1].

We begin with the upper bound implicit in the theorem. If p - ϕ(n), then n is

not divisible by any prime q ≡ 1 (mod p). So, for any prime p, the second item

above implies that the number of n ≤ x with p - ϕ(n) is O(x exp(−y/p)). We

sum this inequality for all p ≤ y1−ε, so finding that the number of n ≤ x such

that ϕ(n) is not divisible by every prime p ≤ y1−ε is O(xy exp(−yε)). Thus, the

number of pairs (m,n) with m,n ≤ x and either ϕ(m) or ϕ(n) not divisible by

every prime p ≤ y1−ε is O(x2y exp(−yε)). This expression is o(z2) as x → ∞, so

we may assume that the pairs we are counting have both ϕ(m), ϕ(n) divisible by

every prime to y1−ε. For such a pair to be singular it is necessary that m,n be

coprime to every prime to y1−ε. By a simple sieve (i.e., inclusion-exclusion) and

Mertens’ theorem, the number of integers n ≤ x not divisible by any prime to y1−ε

is ∼ e−γx/ log(y1−ε) ∼ z as x→∞. Hence the number of pairs of such integers is

at most (1 + o(1))z2 as x→∞.
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For the lower bound implicit in the theorem we take pairs (m,n) with m,n ≤ x
and mn not divisible by any prime p ≤ y1+ε. As in the upper bound argument, the

number of such pairs is ∼ z2 as x → ∞, so it suffices to show that most of these

pairs are singular. If such a pair is not singular then there is a prime p > y1+ε

dividing gcd(m,ϕ(n)) or gcd(n, ϕ(m)).

For a given prime p, if p | ϕ(n), then either p2 | n or there is a prime q | n with

q ≡ 1 (mod p). By the third result above, the number of n ≤ x with p | ϕ(n),

where p > y1+ε, is thus

O

(
x

p2
+
xy

p

)
= O

(
xy

p

)
.

We conclude that the number of pairs (m,n) with m,n ≤ x and with p dividing

gcd(m,ϕ(n)) is

O

(
x2y

p2

)
,

and the same estimate pertains to the number of pairs with p | gcd(n, ϕ(m)). We

sum this for p ≥ y1+ε getting

O

(
x2y

y1+ε log y

)
= O

(
x2

yε

)
.

Since this expression is o(z2) as x→∞, the result is established.

Remark 2.2. We note that the above proof can be amended to show that the number

of ordered k-tuples (m1, . . . ,mk) of positive integers ≤ x, where each pair (mi,mj)

with i 6= j is singular, is ∼ zk as x → ∞. Here we assume that k is arbitrary, but

fixed. The same asymptotic holds where we do not insist that i 6= j, which is then

equivalent to m1 . . .mk being cyclic, even though this condition is slightly stronger.

The set of k-tuples defined above, suggests that a generalisation of Theoren 1.2

could hold. However, a direct extension is not possible. The problem is that if a

group G = X1X2 . . . Xk decomposes as a product of more than two groups, then

the product of two factors XiXj may not form a subgroup. Further, it is not clear

how one might generalize the concept of singular to complete multipartite graphs.

However, we can say something about groups along the following lines. Say an

ordered k-tuple (m1, . . . ,mk) is singular if there is no non-abelian group which is

the product of pairwise disjoint subgroups Cm1 , . . . , Cmk
. It is easy to see from

Theorem 1.2 that this generalizes the concept of singular pairs. Further, using the

thoughts in Remark 2.2 we have that for k fixed, the number of singular k-tuples

with coordinates at most x is ∼ zk as x→∞.
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[8] G. Jones, R. Nedela, and M. Škoviera, Complete bipartite graphs with a unique

regular embedding, J. Comb. Theory B 98 (2008), 241–248.

[9] D. Jungnickel, On the uniqueness of the cyclic group of order n, Amer. Math.

Monthly, 99 (1992), 545–547.

[10] S. Lando and A. Zvonkin, Graphs on surfaces and their applications. With

an appendix by Don B. Zagier. Encyclopaedia of Mathematical Sciences, 141.

Low-Dimensional Topology, II. Springer-Verlag, Berlin, 2004.

[11] T. Müller, An arithmetic theorem related to groups of bounded nilpotency, J.

Algebra 300 (2006), 10–15.



INTEGERS: 18 (2018) 7

[12] G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigen-

schaft gehren, Arch. Math. 10 (1959) 331–343.

[13] P. Pollack, Euler and the partial sums of the prime harmonic series, Elem.

Math 70 (2015), 13–20.

[14] C. Pomerance, On the distribution of amicable numbers, J. Reine Angew.

Math. 293/294 (1977), 217–222.
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