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Abstract. A positive integer n is called cyclic if there is a unique group
of order n, which is necessarily cyclic. Using a characterisation of the cyclic
integers as those n satisfying gcd(n, ϕ(n)) = 1, P. Erdős (1947) proved that
the number of cyclic integers n ≤ x is asymptotic to z(x) = e−γ x

log log log x ,

as x→∞, where γ is Euler’s constant. An ordered pair of integers (m,n)
is called singular if gcd(m,ϕ(n)) = 1 and gcd(n, ϕ(m)) = 1, a concept
which is relevant to pairwise products of cyclic groups and to embeddings
of complete bipartite graphs. In this note we show that the number of
singular pairs of integers (m,n), m,n ≤ x, is asymptotic to z(x)2.

1. Introduction

Say a positive integer n is cyclic if there is just one group, up to isomor-
phism, of order n, which of course is necessarily cyclic. A number-theoretic
characterisation of cyclic integers is given by the following theorem.

Theorem 1.1. [17] The positive integer n is cyclic if and only if n and ϕ(n)
are coprime.

Here, ϕ is Euler’s totient function. Theorem 1.1 has some history. According
to our knowledge it first appears explicitly in a paper by Szele [17] published
in 1947. In 1992 another simple proof of Theorem 1.1 was published in [9].
There are signs that the result was known to Burnside and Hölder already
around the year 1900, for instance it appears as an exercise in the monograph
by Robinson [16, 10.1, Exercise 12] attributed to Burnside. Moreover, in 1885
Hölder in [7] proved that the number of groups of squarefree order n is given
by

g(n) =
∑
d|n

∏
p|d

pνp(n/d) − 1

p− 1
,

where the product is over the primes p dividing d, and νp(m) is the number of
primes ≡ 1 (mod p) dividing m. Theorem 1.1 follows immediately. Indeed, for
n squarefree, since the summand with d = 1 always contributes 1 to the sum
(as an empty product), we have g(n) = 1 exactly when the other terms are all
0, which occurs exactly when gcd(n, ϕ(n)) = 1. Further if n is not squarefree,
one can easily construct a group of order n that is not cyclic.

Another related result was proved by Dickson [1] in 1905, where he charac-
terised the integers n such that all groups of order n are abelian. This result
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can be found in papers by Szep [18] and Rédei [16] as well. In particular, the
abelian criterion is that n is cube-free and for pkq | n with p, q primes, we
have q - pk − 1. A result of G. Padzerski [12] from 1959 further characterises
those numbers n such that every group of order n is nilpotent: Such n satisfy
the same condition as the abelian condition without the requirement that n
be cube-free. Also see Müller [11] for more in this vein.

Erdős proved in [2] that the number of cyclic integers is asymptotically
z(x) := e−γx/log log log x, where γ is Euler constant. Call a positive integer
n abelian (nilpotent), if every group of order n is abelian (nilpotent). It is
interesting that the number of abelian n 6 x is also ∼ z(x) and the same is
true for the number of nilpotent n 6 x, even though there are more of these
integers than there are cyclic integers. Erdős and Mays [3] found asymptotics
for the number of abelian n 6 x that are not cyclic and also for the number
of nilpotent n 6 x that are not abelian.

The cyclic integers were rediscovered in the context of topological graph
theory [8], where it was proved that the complete bipartite graph Kn,n has a
unique regular embedding into an orientable surface if and only if n is cyclic.
Here, a 2-cell embedding of a graph into an orientable surface is regular if the
group of orientation-preserving automorphisms is regular on the set of arcs.

The main topic of this note is the concept of a singular pair. An ordered
pair of positive integers (m,n) is singular if gcd(m,ϕ(n)) = gcd(n, ϕ(m)) = 1.
Observe that the pair (n, n) is singular if and only if n is cyclic. Generalizing
the result of [8] mentioned above about embeddings of Kn,n, Fan and Li [4]
proved that the complete bipartite graph Km,n has a unique edge-transitive
embedding into an orientable surface if and only if the pair (m,n) is singular.
Independently, the following statement was proved in [5]:

Theorem 1.2. [5] Let m and n be positive integers. Then the following state-
ments are equivalent:

(1) the pair (m,n) is singular,
(2) every product of disjoint cyclic groups Cm and Cn of orders m and n

is the direct product Cm × Cn,
(3) every product of cyclic groups of orders m and n is abelian,
(4) the complete bipartite graph Km,n admits a unique edge-transitive em-

bedding into an orientable surface.

Recall that a group G is a product of groups A and B, G = AB, if for every
g ∈ G there exist a ∈ A and b ∈ B such that g = ab. Two subgroups A and B
of G are disjoint, if A ∩B = 1.

We will prove in the next section that the number of singular pairs (m,n)
with m,n 6 x is ∼ z(x)2 as x→∞.

Remark 1.3. Cellular embeddings of bipartite bicoloured graphs into orientable
surfaces form a combinatorial counterpart to algebraic curves defined by poly-
nomial equations in two complex variables. In the context of algebraic geom-
etry Grothendieck called such maps “dessins d’enfant”. The correspondence
between the dessins and algebraic curves is explained by a non-trivial Bely̆ı
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theorem, see [10] for details. If m = n the unique embedding of Kn,n in The-
orem 1.2(4) corresponds to the famous Fermat curve defined by the equation
xn + yn = 1.

2. Main result

In this section we are concerned with the number of singular pairs with
m,n 6 x. The problem of determining this number was mentioned by G.
Jones in a personal communication with one of the authors. Let x be a large
number, and let

y = y(x) = log log x,

z = z(x) = e−γx/ log y, where γ is Euler’s constant,

ε = ε(x) = 1/ log log y.

Observe that the Erdős result [2] can be stated as follows: the number of cyclic
integers ≤ x is ∼ z as x→∞. We prove the following theorem.

Theorem 2.1. The number of singular pairs (m,n) with m,n 6 x is ∼ z2 as
x→∞.

When we use O-notation, the implied constant is assumed to be absolute.
We let p, q, r denote primes.

Proof. We shall use a few results about primes in residue classes.

(1) If a,m are integers with m > 0 and gcd(a,m) = 1, then∑
p6x

p≡ a (mod m)

1

p
=

y

ϕ(m)
+O(1).

(2) If a,m are as above, then∑
n6x

p |n⇒ p 6≡ a (mod m)

1 = O

(
x exp

(
− y

ϕ(m)

))
.

(3) If a,m are as above, then∑
|a|<p6x

p≡ a (mod m)

1

p
= O

(
y

ϕ(m)

)
.

The first of these results with a non-uniform O-constant is already implicit
in the work of Dirichlet (see [13, Prop. 5]). The version here, where the O-
constant is uniform, can be found, for example, in [14, Theorem 1]. The second
item follows as a consequence of the first item and from Brun’s method, see [6,
Theorem 2.2]. The Brun–Titchmarsh inequality is used for the third statement;
or see [14, Remark 1].

We begin with the upper bound implicit in the theorem. If p - ϕ(n), then
n is not divisible by any prime q ≡ 1 (mod p). So, for any fixed prime p,
the second item above implies that the number of n 6 x with p - ϕ(n) is



4 R. NEDELA AND C. POMERANCE

O(x exp(−y/p)). We sum this inequality for all p 6 y1−ε, so finding that the
number of n 6 x such that ϕ(n) is not divisible by every prime p 6 y1−ε is
O(xy exp(−yε)). Thus, the number of pairs (m,n) with m,n 6 x and either
ϕ(m) or ϕ(n) not divisible by every prime p 6 y1−ε is O(x2y exp(−yε)). This
expression is o(z2) as x→∞, so we may assume that the pairs we are counting
have both ϕ(m), ϕ(n) divisible by every prime to y1−ε. For such a pair to be
singular it is necessary that m,n be coprime to every prime to y1−ε. By a
simple sieve (i.e., inclusion-exclusion) and Mertens’ theorem, the number of
integers n 6 x not divisible by any prime to y1−ε is ∼ e−γx/ log(y1−ε) ∼ z as
x→∞. Hence the number of pairs of such integers is at most (1 + o(1))z2 as
x→∞.

For the lower bound implicit in the theorem we take pairs (m,n) with
m,n 6 x and mn not divisible by any prime p 6 y1+ε. As in the upper
bound argument, the number of such pairs is ∼ z2 as x→∞, so it suffices to
show that most of these pairs are singular. If such a pair is not singular then
there is a prime p > y1+ε dividing gcd(m,ϕ(n)) or gcd(n, ϕ(m)).

For a given prime p, if p | ϕ(n), then either p2 | n or there is a prime q | n
with q ≡ 1 (mod p). By the third result above, the number of n 6 x with
p | ϕ(n) is thus

O

(
x

p2
+
xy

p

)
= O

(
xy

p

)
.

We conclude that the number of pairs (m,n) with m,n 6 x and with p dividing
gcd(m,ϕ(n)) is

O

(
x2y

p2

)
,

and the same estimate pertains to the number of pairs with p | gcd(n, ϕ(m)).
We sum this for p > y1+ε getting

O

(
x2y

y1+ε log y

)
= O

(
x2

yε

)
.

Since this expression is o(z2) as x→∞, the result is established. �

Remark 2.2. We note that the above proof can be amended to show that the
number of ordered k-tuples (m1, . . . ,mk) of positive integers 6 x, where each
pair (mi,mj) with i 6= j is singular, is ∼ zk as x → ∞. Here we assume that
k is arbitrary, but fixed. The same asymptotic holds where we do not insist
that i 6= j, which is then equivalent to m1 . . .mk being cyclic, even though this
condition is slightly stronger.

The set of k-tuples defined above, suggests that a generalisation of Theo-
ren 1.2 could hold. However, a direct extension is not possible. The problem
is that if a group G = X1X2 . . . Xk decomposes as a product of more than
two groups, then the product of two factors XiXj may not form a subgroup.
Further, it is not clear how one might generalize the concept of singular to
complete multipartite graphs. However, we can say something about groups
along the following lines. Say an ordered k-tuple (m1, . . . ,mk) is singular if
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there is no non-abelian group which is the product of pairwise disjoint sub-
groups Cm1 , . . . , Cmk

. It is easy to see from Theorem 1.2 that this generalizes
the concept of singular pairs. Further, using the thoughts in Remark 2.2 we
have that for k fixed, the number of singular k-tuples with coordinates at most
x is ∼ zk as x→∞.
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[7] O. Hölder, Die Gruppen mit quadratfreien Ordnungszahl, Nachr. Akad.Wiss. Goettin-

gen Math.-Phys. Kl. II 2 (1895) 211–229.
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