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Abstract. There is a large literature on the asymptotic distribution of num-

bers free of large prime factors, so-called smooth or friable numbers. But there
is very little known about this distribution that is numerically explicit. In

this paper we follow the general plan for the saddle point argument of Hilde-

brand and Tenenbaum, giving explicit and fairly tight intervals in which the
true count lies. We give two numerical examples of our method, and with

the larger one, our interval is so tight we can exclude the famous Dickman–de

Bruijn asymptotic estimate as too small and the Hildebrand–Tenenbaum main
term as too large.

1. Introduction

For a positive integer n > 1, denote by P (n) the largest prime factor of n, and
let P (1) = 1. Let Ψ(x, y) denote the number of n ≤ x with P (n) ≤ y. Such integers
n are known as y-smooth, or y-friable. Asymptotic estimates for Ψ(x, y) are quite
useful in many applications, not least of which is in the analysis of factorization
and discrete logarithm algorithms.

One of the earliest results is due to Dickman [6] in 1930, who gave an asympotic
formula for Ψ(x, y) in the case that x is a fixed power of y. Dickman showed that

Ψ(x, y) ∼ xρ(u) (y →∞, x = yu)(1.1)

for every fixed u ≥ 1, where ρ(u) is the “Dickman–de Bruijn” function, defined to
be the continuous solution of the delay differential equation

uρ′(u) + ρ(u− 1) = 0 (u > 1),

ρ(u) = 1 (0 ≤ u ≤ 1).

There remain the questions of the error in the approximation (1.1), and also the
case when u = log x/ log y is allowed to grow with x and y. In 1951, de Bruijn [3]
proved that

Ψ(x, y) = xρ(u)
(

1 +Oε

( log(1 + u)

log y

))
holds uniformly for x ≥ 2, exp{(log x)5/8+ε} < y ≤ x, for any fixed ε > 0. After
improvements in the range of this result by Maier and Hensley, Hildebrand [10]
showed that the de Bruijn estimate holds when exp({(log log x)5/3+ε}) ≤ y ≤ x.

In 1986, Hildebrand and Tenenbaum [11] provided a uniform estimate for Ψ(x, y)
for all x ≥ y ≥ 2, yielding an asymptotic formula when y and u tend to infinity.
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The starting point for their method is an elementary argument of Rankin [17] from
1938, commonly known now as Rankin’s “trick”. For complex s, define

ζ(s, y) =
∑
n≥1

P (n)≤y

n−s =
∏
p≤y

(1− p−s)−1

(where p runs over primes) as the partial Euler product of the Riemann zeta function
ζ(s). In the case that s = σ is real and 0 < σ < 1, we have

(1.2) Ψ(x, y) =
∑
n≤x

P (n)≤y

1 ≤
∑

P (n)≤y

(x/n)σ = xσζ(σ, y).

Then σ can be chosen optimally to minimize xσζ(σ, y).
Let

φj(s, y) =
∂j

∂sj
log ζ(s, y).

The function

φ1(s, y) = −
∑
p≤y

log p

ps − 1

is especially useful since the real solution α = α(x, y) to φ1(α, y) + log x = 0 gives
the optimal σ in (1.2). We also denote σj(x, y) = |φj(α(x, y), y)|.

In this language, Hildebrand and Tenenbaum [11] proved that the estimate

Ψ(x, y) =
xαζ(α, y)

α
√

2πσ2(x, y)

(
1 +O

( 1

u
+

log y

y

))
holds uniformly for x ≥ y ≥ 2. As suggested by this formula, quantities α(x, y) and
σ2(x, y) are of interest, and were given uniform estimates which imply the formulae

α(x, y) ∼ log(1 + y/ log x)

log y

and

σ2(x, y) ∼
(

1 +
log x

y

)
log x log y,

together which imply

Ψ(x, y) ∼ xαζ(α, y)√
2πu log(y/ log x)

(if y/ log x→∞),

Ψ(x, y) ∼ xαζ(α, y)√
2πy/ log y

(if y/ log x→ 0).

These formulae indicate that Ψ(x, y) undergoes a “phase change” when y is of
order log x, see [2]. This paper concentrates on the range where y is considerably
larger, say y > (log x)4.

The primary aim of this paper is to make the Hildebrand–Tenenbaum method
explicit and so effectively construct an algorithm for obtaining good bounds for
Ψ(x, y).



NUMBERS FREE OF LARGE PRIMES, EXPLICITLY 3

1.1. Explicit Results. Beyond the Rankin upper bound Ψ(x, y) ≤ xαζ(α, y), we
have the explicit lower bound

Ψ(x, y) ≥ x1−log log x/ log y =
x

(log x)u

due to Konyagin and Pomerance [13]. Recently Granville and Soundararajan [9]
found an elementary improvement of Rankin’s upper bound, which they have gra-
ciously permitted us to include in an appendix in this paper. In particular, they
show that

Ψ(x, y) ≤ 1.39y1−σxσζ(σ, y)/ log x

for every value of σ ∈ [1/ log y, 1], see Theorem 5.1.
In another direction, by relinquishing the goal of a compact formula, several

authors have devised algorithms to compute bounds on Ψ(x, y) for given x, y as
inputs. For example, using an accuracy parameter c, Bernstein [1] created an
algorithm to generate bounds B−(x, y) ≤ Ψ(x, y) ≤ B+(x, y) with

B−

Ψ
≥ 1− log x

c log 3/ log 2
and

B+

Ψ
≤ 1 +

2 log x

c log 3/ log 2
,

running in

O
( y

log2 y
+
y log x

log2 y
+ c log x log c

)
time. Parsell and Sorenson [15] refined this algorithm to run in

O
(
c
y2/3

log y
+ c log x log c

)
time, as well as obtaining faster and tighter bounds assuming the Riemann Hy-
pothesis. The largest example computed by this method was an approximation of
Ψ(2255, 228).

Figure 1. Examples.

x 10100 10500

y 1015 1035

KP 1.786 · 1084 1.857 · 10456

R 4.599 · 1096 9.639 · 10484

GS 5.350 · 1095 6.596 · 10483

DD 2.523 · 1094 1.472 · 10482

HT 2.652 · 1094 1.5127 · 10482

Ψ− 2.330 · 1094 1.4989 · 10482

Ψ+ 2.923 · 1094 1.5118 · 10482
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In Fig. 1,

KP is the Konyagin–Pomerance lower bound x/(log x)u,

R is the Rankin upper bound xαζ(α, y),

GS is the Granville–Soundararajan upper bound 1.39y1−αxαζ(α, y)/ log x,

DD is the Dickman–de Bruijn main term ρ(u)x,

HT is the Hildebrand–Tenenbaum main term xαζ(α, y)/(α
√

2πσ2), and

Ψ−,Ψ+ are the lower and upper bounds obtained in this paper.

As seen in Fig. 1, the lower bound presented in this paper does better than the
Konyagin–Pomerance lower bound by 10 orders of magnitude in the smaller example
and 26 orders of magnitude in the larger example. The upper bound presented is
about 2 to 3 orders of magnitude better than the Rankin estimate and about 1.5
orders of magnitude better than the new Granville–Soundararajan estimate.

As a point of reference we also give the main-term estimates xαζ(α, y)/α
√

2πσ2
from [11] and ρ(u)x from [6]. It is interesting that our lower and upper estimates
in the second example create an interval for the true count that is tight enough to
exclude both the Dickman–de Bruijn and Hildebrand–Tenenbaum main terms. The
second-named author has asked if Ψ(x, y) ≥ xρ(u) holds in general for x ≥ 2y ≥ 2,
see [8, (1.25)]. This inequality is known for u bounded and x sufficiently large, see
the discussion in [14, Section 9].

Our principal result, which benefits from some notation developed over the course
of the paper, is Theorem 3.11. It is via this theorem that we were able to estimate
Ψ(10100, 1015) and Ψ(10500, 1035) as in the table above.

2. Plan for the paper

The basic strategy of the saddle-point method relies on Perron’s formula, which
implies the identity1

Ψ(x, y) =
1

2πi

∫ σ+i∞

σ−i∞
ζ(s, y)

xs

s
ds,

for any σ > 0. A convenient value of σ to use is the saddle point α = α(x, y)
discussed in the Introduction: For any σ > 0, the integrand is maximized on the
vertical line with real part σ at s = σ, and this maximum is minimized for σ > 0
at α.

We are interested in abridging the integral at a certain height T and then ap-
proximating the contribution given by the tail. To this end, we have

(2.1) Ψ(x, y) =
1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds+ Error.

1The right side should be increased by 1
2

in the case that x itself is a y-smooth integer.
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There is a change in behavior occurring in ζ(s, y) when t = Im(s) is on the order
1/ log y. In [11] it is shown that∣∣∣ ζ(s, y)

ζ(α, y)

∣∣∣ =
∏
p≤y

∣∣∣1− p−α
1− p−s

∣∣∣ =
∏
p≤y

(
1 +

2(1− cos(t log p))

pα(1− p−α)2

)−1/2
≤ exp

{
−
∑
p≤y

1− cos(t log p)

pα

}
.(2.2)

Thus, when t is small (compared to 1/ log y) the oscillatory terms are in resonance,
and when t is large the oscillatory terms should exhibit cancellation. This behavior
suggests we should divide our range of integration into |t| ≤ T0 and T0 < |t| < T ,
where T0 ≈ 1/ log y is a parameter to be optimized.

The contribution for |t| ≤ T0 will constitute a “main term”, and so we will try
to estimate this part very carefully. In this range we forgo (2.2) and attack the
integrand ζ(s, y)xs/s directly. The basic idea is to expand φ(s, y) = log ζ(s, y) as a
Taylor series in t. This approach, when carefully done, gives us fairly close upper
and lower bounds for the integral. In our smaller example, the upper bound is less
than 1% higher than the lower bound, and in the larger example, this is better by
a factor of 20. Considerably more noise is encountered beyond T0 and in the Error
in (2.1).

For the second range T0 < |t| < T , we focus on obtaining a satisfactory lower
bound on the sum over primes,∑

p≤y

1− cos(t log p)

pα
.

Our strategy is to sum the first L terms directly, and then obtain an analytic
formula W (y, w) to lower bound the remaining terms starting at some w ≥ L,
where essentially

W (y, w) =
y1−α − w1−α

1− α
+ error.

With an explicit version of Perron’s formula, the Error in (2.1) may be handled
by ∣∣Error

∣∣ ≤ xα ∑
P (n)≤y

T | log(x/n)|>Td

1

nα
1

πT | log(x/n)|
+

∑
P (n)≤y

T | log(x/n)|≤Td

(x
n

)α

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

1−d
, y)−Ψ(xe−T

1−d
, y)
]
.

Here d ≈ 1
2 is a parameter of our choosing, which we set to balance the two terms

above. Thus the problem of bounding |Error| is reduced to estimating the number

of y-smooth integers in the “short” interval
(
xe−T

1−d
, xeT

1−d]
.

This latter portion is better handled when T is large, but the earlier portion in
the range [T0, T ] is better handled when T is small. Thus, T is numerically set to
balance these two forces.
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In our proofs we take full advantage of some recent calculations involving the
prime-counting function π(x) and the Chebyshev functions

ψ(x) =
∑
pm≤x

log p, ϑ(x) =
∑
p≤x

log p,

with p running over primes and m running over positive integers. As a corollary of
the papers [4], [5] of Büthe we have the following excellent result.

Proposition 2.1. For 1427 ≤ x ≤ 1019 we have

.05
√
x ≤ x− ϑ(x) ≤ 1.95

√
x.

We have

|ϑ(x)− x|
x

<


2.3 · 10−8, when x > 1019,

1.2 · 10−8, when x > e45,

1.2 · 10−9, when x > e50,

2.9 · 10−10, when x > e55.

Proof. The first assertion is one of the main results in Büthe [5]. Let H be a number
such that all zeros of the Riemann zeta-function with imaginary parts in [0, H] lie
on the 1/2-line. Inequality (7.4) in Büthe [4] asserts that if x/ log x ≤ H2/4.922

and x ≥ 5000, then
|ϑ(x)− x|

x
<

(log x− 2) log x

8π
√
x

.

We can take H = 3 · 1010, see Platt [16]. Thus, we have the result in the range
1019 ≤ x ≤ e45. For x ≥ e45 we have from Büthe [4] that |ψ(x)−x|/x ≤ 1.118·10−8.
Further, we have (see [18, (3.39)]) for x > 0,

ψ(x) ≥ ϑ(x) > ψ(x)− 1.02x1/2 − 3x1/3.

(This result can be improved, but it is not important to us.) Thus, for x ≥ e45

we have |ϑ(x) − x|/x ≤ 1.151 · 10−8, establishing our result in this range. For the
latter two ranges we argue similarly, using |ψ(x)− x| ≤ 1.165 · 10−9 when x ≥ e50

and |ψ(x) − x| ≤ 2.885 · 10−10 for x ≥ e55, both of these inequalities coming from
[4]. �

We remark that there are improved inequalities at higher values of x, found in
[4] and [7], which one would want to use if estimating Ψ(x, y) for larger values of y
than we have done here.

3. The main argument

As in the Introduction, for complex s, define

ζ(s, y) =
∑
n≥1

P (n)≤y

n−s =
∏
p≤y

(1− p−s)−1,

which is the Riemann zeta function restricted to y-smooth numbers, and for j ≥ 0,
let

φj(s, y) =
∂j

∂sj
log ζ(s, y).
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We have the explicit formulae,

φ1(s, y) = −
∑
p≤y

log p

ps − 1
,

φ2(s, y) =
∑
p≤y

ps log2 p

(ps − 1)2
,

φ3(s, y) = −
∑
p≤y

(p2s + ps) log3 p

(ps − 1)3
,

φ4(s, y) =
∑
p≤y

(p3s + 4p2s + ps) log4 p

(ps − 1)4
,

φ5(s, y) = −
∑
p≤y

(p4s + 11p3s + 11p2s + ps) log5 p

(ps − 1)5
.

Note that for y ≥ 2, σ > 0, φ1(σ, y) is strictly increasing from 0, so there is a unique
solution α = α(x, y) > 0 to the equation

log x+ φ1(α, y) = 0.

Since we cannot exactly solve this equation for α, we must take into account an
upper bound for the difference between our value and the exact value. We denote

φj = φj(α, y), σj = |φj | = (−1)jφj , Bj = Bj(t) = σjt
j/j!

so that the Taylor series of φ(s, y) = log ζ(s, y) about s = α is

φ(α+ it, y) =
∑
j≥0

σj
j!

(−it)j =
∑
j≥0

(−i)jBj .

Our first result, which is analogous to Lemma 10 in [11], sets the stage for our
estimates.

Lemma 3.1. Let 0 < d < 1 and T > 1. We have that∣∣∣Ψ(x, y)− 1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds
∣∣∣

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

d−1

, y)−Ψ(xe−T
d−1

, y)
]
.

Proof. We have

1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds =

1

2πi

∫ α+iT

α−iT

∑
P (n)≤y

(x
n

)s ds
s

=
∑

P (n)≤y

1

2πi

∫ α+iT

α−iT

(x
n

)s ds
s
,

where the interchange of sum and integral is justified since ζ(s, y) is a finite product,
hence uniformly convergent as a sum.
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By Perron’s formula (see [12, Theorem G] and its proof), we have∣∣∣ 1

2πi

∫ α+iT

α−iT

(x
n

)s ds
s

∣∣∣ ≤ (x/n)α

max
(

1, πT | log(x/n)|
) if n > x,

∣∣∣1− 1

2πi

∫ α+iT

α−iT

(x
n

)s ds
s

∣∣∣ ≤ (x/n)α

max
(

1, πT | log(x/n)|
) if n ≤ x.

Together these imply∣∣∣Ψ(x, y)− 1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds
∣∣∣ ≤ xα ∑

P (n)≤y

n−α

max
(

1, πT | log(x/n)|
)

≤ xα
∑

P (n)≤y
| log(x/n)|>Td−1

1

nα
1

πT | log(x/n)|
+ xα

∑
P (n)≤y

| log(x/n)|≤Td−1

1

nα

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

d−1

, y)−Ψ(xe−T
d−1

, y)
]
.

This completes the proof. �

In using this result we have the problems of performing the integration from
α − iT to α + iT and estimating the number of y-smooth integers in the interval(
xe−T

d−1

, xeT
1−d]

. We turn first to the integral evaluation.

Recall that Bj = Bj(t) = σj(x, y)tj/j! and let B∗1 = B∗1(t) = t log x − B1(t).
Note that B∗1 = 0 if α is chosen perfectly.

Lemma 3.2. For s = α+ it, we have

Re
{
ζ(s, y)

xs

s

}
=

xαζ(α, y)

α2 + t2
(
α cos(B3 +B∗1 + b5) + t sin(B3 +B∗1 + b5)

)
exp

{
−B2 +B4 + a5

}
,

where a5, b5 are real numbers, depending on the choice of t, with |a5 + ib5| ≤ B5(t).

Proof. We expand φ(α + it, y) = log ζ(α + it, y) in a Taylor series around t = 0.
There exists some real ξ between 0 and t such that

φ(α+ it, y) = φ(α, y) + itφ1 −
t2

2
φ2 −

it3

3!
φ3 +

t4

4!
φ4 − i

t5

5!
(α+ iξ, y)

= B0 − iB1 −B2 + iB3 +B4 − i
t5

5!
φ5(α+ iξ, y).

Since ζ(s, y) = exp(φ(s, y)), we obtain

ζ(s, y)
xs

s
=
ζ(α, y)xα

α+ it
exp

{
it log x− iB1 −B2 + iB3 +B4 + i

t5

5!
φ5(α+ iξ, y)

}
=
xαζ(α, y)

α+ it
exp

{
−B2 +B4 + i(B∗1 +B3) + i

t5

5!
φ5(α+ iξ, y)

}
.

Letting iφ5(α+ iξ)t5/5! = a5 + b5i, we have

ζ(s, y)
xs

s
=

xαζ(α, y)

α2+t2
(α−it)

(
cos(B∗1 +B3 + b5) + i sin(B∗1 +B3 + b5)

)
exp

{
−B2 +B4 + a5

}
,
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and taking the real part gives the result. �

The main contribution to the integral in Lemma 3.1 turns out to come from the
interval [−T0, T0], where T0 is fairly small. We have

1

2πi

∫ α+iT0

α−iT0

ζ(s, y)
xs

s
ds =

1

2π

∫ T0

−T0

ζ(α+ it, y)
xα+it

α+ it
dt.

Note that the integrand, written as a Taylor series around s = α, has real coeffi-
cients, so the real part is an even function of t and the imaginary part is an odd
function. Thus, the integral is real, and its value is double the value of the integral
on [0, T0].

Consider the cosine, sine combination in Lemma 3.2:

f(t, v) := α cos(B3(t) + v) + t sin(B3(t) + v),

and let

v0(t) = |B∗1(t)|+B5(t).

We have, for each value of t, the constraint that |v| ≤ v0(t). The partial derivative
of f(t, v) with respect to v is zero when arctan(t/α)−B3(t) ≡ 0 (mod π). Let

u(t) = arctan(t/α)−B3(t).

If u(t) 6∈ [−v0(t), v0(t)], then f(t, v) is monotone in v on that interval; otherwise it
has a min or max at u(t). Let T3, T2, T1, T0 be defined, respectively, as the least
positive solutions of the equations

u(t) = v0(t), u(t) = −v0(t), u(t) + π = v0(t), u(t) + π = −v0(t).

Then 0 < T3 < T2 < T1 < T0. We have the following properties for f(t, v):

(1) For t in the interval [0, T3] we have f(t, v) increasing for v ∈ [−v0(t), v0(t)],
so that

f(t,−v0(t)) ≤ f(t, v) ≤ f(t, v0(t)).

(2) For t in the interval [T3, T2], we have f(t, v) increasing for −v0(t) ≤ v ≤ u(t)
and then decreasing for u(t) ≤ v ≤ v0(t). Thus,

min{f(t,−v0(t)), f(t, v0(t))} ≤ f(t, v) ≤ f(t, u(t)).

(3) For t ∈ [T2, T1], f(t, v) is decreasing for v ∈ [−v0(t), v0(t)], so that

f(t, v0(t)) ≤ f(t, v) ≤ f(t,−v0(t)).

(4) For t ∈ [T1, T0], we have f(t, v) decreasing for v ∈ [−v0(t), u(t) + π] and
increasing for v ∈ [u(t) + π, v0(t)]; that is,

f(t, u(t) + π) ≤ f(t, v) ≤ max{f(t,−v0(t)), f(t, v0(t))}.

Note too that f(t, v) has a sign change from positive to negative in the interval
[T2, T1]. Let Z−, Z+ be, respectively, the least positive roots of f(t, v(t)) = 0,
f(t,−v(t)) = 0.

Let I+0 be an upper bound for the function appearing in Lemma 3.2 on [0, T0]
using |a5|, |b5| ≤ B5 and the above facts about f(t, v), and let I−0 be the corre-
sponding lower bound. We choose a5 = B5 in I+0 when the cos, sin combination is
positive, and a5 = −B5 when it is negative. For I−0 , we choose a5 in the reverse
way.
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Let

(3.1) J+
0 =

∫ T0

0

I+0 (t) dt, J−0 =

∫ T0

0

I−0 (t) dt.

We thus have the following result, which is our analogue of Lemma 11 in [11].

Lemma 3.3. We have

xαζ(α, y)

π
J−0 ≤

1

2πi

∫ α+iT0

α−iT0

ζ(s, y)
xs

s
ds ≤ xαζ(α, y)

π
J+
0 .

In order to estimate the integral in Lemma 3.1 when |t| > T0 we must know
something about prime sums to y.

Lemma 3.4. We have∣∣∣ ∫ α+iT

α+iT0

ζ(s, y)
xs

s
ds
∣∣∣ ≤ xαζ(α, y)J1,

where

J1 :=

∫ T

T0

exp
(
−W (y, 1, t)

) dt√
α2 + t2

and

(3.2) W (v, w, t) :=
∑

w<p≤v

1− cos(t log p)

pα
.

Proof. For 0 ≤ v ≤ 1 < t, equation (3.14) in [11] states that

(1 + 4vt/(t− 1)2)−1 ≤ exp{−4v/t}.

Applied to (3.17) in [11] with v = (1− cos(t log p))/2, we have that∣∣∣ ζ(s, y)

ζ(α, y)

∣∣∣ =
∏
p≤y

∣∣∣1− p−α
1− p−s

∣∣∣ =
∏
p≤y

(
1 +

2(1− cos(t log p))

pα(1− p−α)2

)−1/2
≤ exp

{
−
∑
p≤y

1− cos(t log p)

pα

}
.

(3.3)

This completes the proof. �

Our goal now is to find a way to estimate W (v, w, t). The following result is
analogous to Lemma 6 in [11].

Lemma 3.5. Let s be a complex number, let 1 < w < v, and define

Fs(v, w) :=
∑

w<p≤v

log p

ps
− v1−s − w1−s

1− s
.

(i) If v ≤ 1019 we have

|Fs(v, w)| ≤ 2(v1/2−α + w1/2−α) + 2|s|w
1/2−α − v1/2−α

α− 1/2
.

(ii) If 1019 ≤ w ≤ v we have

|Fs(v, w)| ≤ εw
(
vβ + wβ + |s|v

β − wβ

β

)
,



NUMBERS FREE OF LARGE PRIMES, EXPLICITLY 11

where β = 1− α and

εw =


2.3 · 10−8, w ∈ (1019, e45],

1.2 · 10−8, w ∈ (e50, e55],

1.2 · 10−9, w ∈ (e50, e55],

2.9 · 10−10, w > e55.

Proof. (i) By partial summation,∑
w<p≤v

log p

ps
=
ϑ(v)

vs
− ϑ(w)

ws
+

∫ v

w

s
ϑ(t)

ts+1
dt

=
v1−s − w1−s

1− s
− E(v)

vs
+
E(w)

ws
−
∫ v

w

s
E(t)

ts+1
dt,

so by the first part of Proposition 2.1,

|Fs(v, w)| ≤ |E(v)|
vα

+
|E(w)|
wα

+ |s|
∫ v

w

E(t)

t1+α
dt

≤ 2v1/2−α + 2w1/2−α + 2|s|v
1/2−α − w1/2−α

1/2− α
.

(ii) Similarly, by the second part of Proposition 2.1,

|Fs(v, w)| ≤ |E(v)|
vα

+
|E(w)|
wα

+ |s|
∫ v

w

E(t)

t1+α
dt ≤ εw

(
v1−α + w1−α + |s|

∫ v

w

dt

tα

)
= εw

(
v1−α + w1−α + |s|v

1−α − w1−α

1− α

)
.

�

The following result plays the role of Corollary 6.1 in [11].

Lemma 3.6. For t ∈ R, z > 1, and β = 1− α, let

δz := t log z − arctan(t/β).

(i) For 1427 ≤ w < v ≤ 1019 we have that W (v, w, t) ≥W0(v, w, t), where

W0(v, w, t) log v =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2

− 4(v1/2−α + w1/2−α)− 2(α+ |s|)w
1/2−α − v1/2−α

α− 1/2
.

(ii) For 1019 ≤ w < v we have that W (v, w, t) ≥W0(v, w, t), where

W0(v, w, t) log v =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2

− 2εw
(
vβ + wβ

)
− εw(α+ |s|)

(vβ − wβ
β

)
.
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Proof. We apply Lemma 3.5 with s = 1 − β and s = 1 − β + it, and take the real
part of the difference. Letting the difference of the sums be S, we have that

S : =
∑

w<p≤v

( log p

p1−β
− log p

p1−β+it

)
=

∑
w<p≤v

log p

p1−β
(1− p−it), so

Re(S) =
∑

w<p≤v

log p

p1−β
(1− cos(t log p)),

which is the sum we wish to bound.
For a positive real number z, let Sz := zβ

β −
zβ−it

β−it . We have that

Sz =
zβ

β

(
1− β

β − it
z−it

)
=
zβ

β

(
1− β β + it

β2 + t2
e−it log z

)
=
zβ

β

(
1− β β + it

β2 + t2
[cos(t log z)− i sin(t log z)]

)
,

so

Re(Sz) =
zβ

β

(
1− β

β2 + t2
[β cos(t log z) + t sin(t log z)]

)
=
zβ

β

(
1− β√

β2 + t2

[β cos(t log z)√
β2 + t2

+
t sin(t log z)√

β2 + t2

])
=
zβ

β

(
1− β√

β2 + t2
cos(t log z + arctan(β/t))

)
=
zβ

β

(
1− β cos δz√

β2 + t2

)
.

Thus,

Re(Sv − Sw) =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2
.(3.4)

Recalling the definition of Fs(v, w), we have

Re(S) = Re(Sv − Sw + Fα(v, w)− Fs(v, w))

≥ Re(Sv − Sw)− |Fα(v, w)| − |Fs(v, w)|
which gives the desired result by (3.4) and Lemma 3.5. �

From Lemma 3.4, we see that a goal is to bound W (y, 1, t) from below, and
pieces of this sum are bounded by Lemma 3.6. Ideally, if y were sufficiently small
W could be computed directly and the problem settled. In practice W might only
be computed up to some convenient number L, suitable for numerical integration,
after which the analytic bound W0(y, w, t) may be used. Still, there are further
refinements to be made. Just as x/ log x loses out to li(x), W0 on a long interval
is smaller than W0 summed on a partition of the interval into shorter parts. This
plan is reflected in the following lemma.

Lemma 3.7. If v, w satisfy the hypotheses of Lemma 3.5, let

W∗(v, w, t) := W0(v/eblog(y/w)c, w, t) +

blog(v/w)c−1∑
j=0

W0(v/ej , v/ej+1, t).

Suppose that w,L satisfy 1427, L ≤ w. If y ≤ 1019, then

J1 ≤
∫ T

T0

exp
(
−W∗(y, w, t)−W (L, 1, t)

) dt√
α2 + t2

.
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If y > e55 and 1427, L ≤ w ≤ 1019, let

W1 = W∗(1019, w, t), W2 = W∗(e
45, 1019, t), W3 = W∗(e

50, e45, t),

W4 = W∗(e
55, e50, t), W5 = W∗(y, e

55, t).

Then

J1 ≤
∫ T

T0

exp
(
−W1 −W2 −W3 −W4 −W5 −W (L, 1, t)

) dt√
α2 + t2

.

We remark that if 1019 < y ≤ e55, then there is an appropriate inequality for J1
involving fewer Wj ’s. If y is much larger than our largest example of y = 1035, one
might wish to use better approximations to ϑ(y) than were used in Proposition 2.1.

Proof. If 1427 ≤ w < v and [w, v] satisfy the hypotheses of Lemma 3.5, we have

W (v, w, t) = W (v/eblog(v/w)c, w, t) +

blog(v/w)c−1∑
j=0

W (v/ej , v/ej+1, t)

≥W0(v/eblog(v/w)c, w, t) +

blog(v/w)c−1∑
j=0

W0(v/ej , v/ej+1, t).

The result then follows from Lemma 3.4. �

Remark 3.8. We implement Lemma 3.7 by choosing L as large as possible so as not
to interfere overly with numerical integration. We have found that L = 106 works
well. The ratio e in the definition of W∗ is convenient, but might be tweaked for
slightly better results. The individual terms in the sum W (L, 1, t) are as in (3.2),
except for the first 30 primes, where instead we forgo using the inequality in (3.3),
using instead the slightly larger expression

1

2
log
(

1 +
2(1− cos(t log p))

pα(1− p−α)2

)
.

We choose w as a function w(t) in such a way that the bound in Lemma 3.6 is
minimized. For simplicity, we ignore the oscillating terms, i.e., we set

∂

∂w

[
− wβ/β − 4w1/2−α + 2(α+ |s|)w1/2−α/(1/2− α)

]
= −wβ−1 − 4w−1/2−α/(1/2− α) + 2(α+ |s|)w−1/2−α

equal to 0. Multiplying by w1/2+α and solving for w gives

w(α, t) :=
( 4

α− 1/2
+ 2α+ 2

√
α2 + t2

)2
.

We let

w(t) := max{L,w(α, t)}.

Our next result, based on [11, Lemma 9], gives a bound on the number of y-
smooth integers in a short interval.

Lemma 3.9. Let 0 < d < 1, T > 1 be such that z := (e2T
d−1 − 1)−1 > 1. We have

Ψ(xeT
1−d

, y)−Ψ(xe−T
1−d

, y) ≤ eα
2/2z2−αTd−1

xαζ(α, y)

√
2e

π

J2
z
.
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where, with W (y, w, t) as in Lemma 3.6,

J2 :=

∫ ∞
0

exp
{
− t2

2z2
−W (y, 1, t)

}
dt.

Proof. Let ξ = xe−T
d−1

, so that

(3.5) Ψ(xeT
d−1

, y)−Ψ(xe−T
d−1

, y) = Ψ(ξ + ξ/z, y)−Ψ(ξ, y).

For ξ < n ≤ ξ + ξ
z , we have that

1 >
ξ

n
≥
(

1 +
1

z

)−1
,

so 0 > log(ξ/n) ≥ − log(1 + 1/z) ≥ − 1
z , which implies that 0 < [z log(ξ/n)]2 ≤ 1.

Thus,

Ψ(ξ + ξ/z, y)−Ψ(ξ, y) =
∑

P (n)≤y
ξ<n≤ξ+ξ/z

1 ≤
√
e

∑
P (n)≤y

ξ<n≤ξ+ξ/z

exp
{
− 1

2
[z log(ξ/n)]2

}
.

For σ, v ∈ R, we have the formula

e−v
2/2 =

1√
2π
eσ

2/2−σv
∫ +∞

−∞
exp

{
− 1

2
t2 + it(σ − v)

}
dt

Letting σ = α/z, v = −z log(ξ/n), we obtain

Ψ(ξ + ξ/z, y)−Ψ(ξ, y)

≤
√

e

2π

∑
P (n)≤y

ξ<n≤ξ+ξ/z

eσ
2/2−σv

∫ +∞

−∞
exp

{
− 1

2
t2 + it(σ − v)

}
dt

=eα
2/2z2

√
e

2π

∫ +∞

−∞
exp

{
− 1

2
t2 + itα/z

} ∑
P (n)≤y

ξ<n≤ξ+ξ/z

( ξ
n

)α+itz
dt.

Since α ≤ 1 ≤ z, changing variables t 7→ t/z and taking the modulus gives

Ψ(ξ + ξ/z, y)−Ψ(ξ, y)

≤z−1eα
2/2z2

√
e

2π

∫ +∞

−∞
exp

{
− t2

2z2
+ itα/z2

} ∑
P (n)≤y

ξ<n≤ξ+ξ/z

( ξ
n

)α+it
dt

≤ξ
α

z
eα

2/2z2
√

e

2π

∫ +∞

−∞
e−t

2/2z2 |ζ(α+ it, y)| dt

=
ξα

z
eα

2/2z2
√

2e

π

∫ ∞
0

e−t
2/2z2 |ζ(α+ it, y)| dt.

This last integral may be estimated by the method of Lemma 3.4, giving∫ ∞
0

e−t
2/2z2 |ζ(α+ it, y)| dt ≤ ζ(α, y)

∫ ∞
0

exp
(
− t2

2z2
−W (y, 1, t)

)
dt = ζ(α, y)J2.

Thus, we have

Ψ(ξ + ξ/z, y)−Ψ(ξ, y) ≤ ξαζ(α, y)eα
2/2z2

√
2e

π

J2
z
,
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and the lemma now follows from (3.5) and the definition of ξ. �

Remark 3.10. For t large, say t > 2z log z, we can ignore the term W (y, 1, t) in
J2, getting a suitably tiny numerical estimate for the tail of this rapidly converging
integral. The part for t small may be integrated numerically with w(t), L as in
Remark 3.8.

With these lemmas, we now have our principal result.

Theorem 3.11. Let d, T, z be as in Lemma 3.9, let J±0 be as in (3.1), J1 as in
Lemma 3.4, and J2 as in Lemma 3.9. We have

Ψ(x, y) ≥ xαζ(α, y)

π

(
J−0 − J1 − T−d − eα

2/2z2
√

2πe
J2
z

)
and

Ψ(x, y) ≤ xαζ(α, y)

π

(
J+
0 + J1 + T−d + eα

2/2z2
√

2πe
J2
z

)
.

4. Computations

In this section we give some guidance on how, for a given pair x, y, the numbers
α, ζ(α, y), and σj for j ≤ 5 may be numerically approximated. Further, we discuss
how these data may be used to numerically approximate Ψ(x, y) via Theorem 3.11.

4.1. Computing α. Given a number a ∈ (0, 1) and a large number y we may
obtain upper and lower bounds for the sum

σ1(a, y) =
∑
p≤y

log p

pa − 1
.

First, we choose a moderate bound w0 ≤ y where we can compute the sum σ1(a,w0)
relatively easily, such as w0 = 179,424,673, the ten-millionth prime. The sum

(4.1)
∑

w0<p≤y

log p

pa

may be approximated easily with Proposition 2.1 and partial summation. Let
l−(a,w0, y) be a lower bound for this sum and let l+(a,w0, y) be an upper bound.
Then

l−(a,w0, y) + σ1(a,w0) ≤ σ1(a, y) ≤ wa0
wa0 − 1

l+(a,w0, y) + σ1(a,w0).

We choose α as a number a where log x lies between these two bounds. If a given
trial for a is too small, this is detected by our lower bound for σ1(a, y) lying above
log x, and if a is too large, we see this if our upper bound for σ1(a, y) lies below
log x. It does not take long via linear interpolation to find a reasonable choice for
α. While narrowing in, one might use a less ambitious choice for w0.

The partial summation used to estimate (4.1) and similar sums may be summa-
rized in the following result.
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Lemma 4.1. Suppose f(t) is positive and f ′(t) is negative on [w0, w1]. Suppose
too that t− 2

√
t < ϑ(t) ≤ t on [w0, w1]. Then∫ w1

w0

(1− 1/
√
t)f(t) dt+ (w0 − ϑ(w0)− 2

√
w0)f(w0)

≤
∑

w0<p≤w1

f(p) log p ≤
∫ w1

w0

f(t) dt+ (w0 − ϑ(w0))f(w0).

Because of Proposition 2.1, the condition on ϑ holds if [w0, w1] ⊂ [1427, 1019].
For intervals beyond 1019, it is easy to fashion an analogue of Lemma 4.1 using the
other estimates of Proposition 2.1.

4.2. Computing σ0 = log ζ(α, y) and the other σj’s. Once a choice for α is
computed it is straightforward to compute σ0 and the other σj ’s.

We have
σ0(α, y) =

∑
p≤y

− log(1− p−α).

We may compute this sum up to some moderate w0 as with the α computation.
For the range w0 < p ≤ y we may approximate the summand by p−α and sum this
over (w0, y] using partial summation (Lemma 4.1) and Proposition 2.1, yielding,
say, a lower bound l−0 and an upper bound l+0 . Then

l−0 + σ0(α,w0) ≤ σ0(α, y) ≤ − log(1− w−α0 )

w−α0

l+0 + σ0(α,w0).

The other σj ’s are computed in a similar manner.

4.3. Data. In Fig. 2, we record our calculations of α and the numbers σj for two
examples. Note that we obtain bounds for ζ via σ0 = log ζ.

Figure 2. Data.

x 10100 10500

y 1015 1035

α .9111581 .94932677
ζ 352,189± 16 2.09222 · 1010 ± 5 · 105

σ∗1 4.3 · 10−4 5.6 · 10−4

σ2 5,763.47± 0.03 71,689.2± 0.02
σ3 159,066.8± 0.5 4,779,948.5± 0.5
σ4 4,604,079± 8 330,260,722± 21

σ+
5 1.3725 · 108 2.3353 · 1010

Note that σ∗1 is an upper bound for |σ1 − log x|, and σ+
5 is an upper bound for

σ5.
The functions α(x, y) and σj(x, y) are of interest in their own right. A simple

observation from their definitions allows for more general bounds on α and σj using
the data in Figure 2, as described in the following remark.

Remark 4.2. For pairs x, y and x′, y′, if x ≥ x′ and y ≤ y′ then α(x, y) ≤ α(x′, y′).
Similarly, if α(x, y) ≥ α(x′, y′) and y ≤ y′ then σj(x, y) ≤ σj(x′, y′).
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4.4. A word on numerical integration. The numerical integration needed to
estimate J1, J2 is difficult, especially when we choose a large value of L, like L =
106. We performed these integrals independently on both Mathematica and Sage
platforms. It helps to segment the range of integration, but even so, the software
can report an error bound in addition to the main estimate. In such cases we have
always added on this error bound and then rounded up, since we seek upper bounds
for these integrals. In a case where one wants to be assured of a rigorous estimate,
there are several options, each carrying some costs. One can use a Simpson or
midpoint quadrature with a mesh say of 0.1 together with a careful estimation
of the higher derivatives needed to estimate the error. An alternative is to do a
Riemann sum with mesh 0.1, where on each interval and for each separate cosine
term appearing, the maximum contribution is calculated. If this is done with
T = 4 · 105 and L = 106, there would be magnitude 1011 of these calculations.
The extreme value of the cosine contribution would either be at an endpoint of an
interval or −1 if the argument straddles a number that is π mod 2π. We have done
a mild form of this method in our estimation of the integrals J±0 , see the discussion
leading up to Lemma 3.3.

4.5. Example estimates. We list some example values of x, y and the correspond-
ing estimates in Fig. 3.

Figure 3. Results.

x 10100 10500

y 1015 1035

T3 .00642708 .00114940
T2 .00644109 .00115038
Z− .0385260 .0124202
Z+ .0403125 .0127461
T1 .0478624 .0155272
T0 .0514483 .0161799
T 4 · 105 109

d 0.57 0.58

J−0 1.78554 · 10−2 4.90043 · 10−3

J+
0 1.80312 · 10−2 4.92738 · 10−3

J1 7.236 · 10−4 1.717 · 10−6

J2 1.758 · 10−2 4.745 · 10−3

Ψ− 2.3302 · 1094 1.4989 · 10482

Ψ+ 2.9227 · 1094 1.5118 · 10482

5. Appendix

We prove the following theorem.

Theorem 5.1 (Granville and Soundararajan). If 3 ≤ y ≤ x and 1/ log y ≤ σ ≤ 1,
then

Ψ(x, y) ≤ 1.39
y1−σ

log x
xσζ(σ, y).
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Proof. By the identity log n =
∑
d|n Λ(d), we have

∑
n≤x

P (n)≤y

log n =
∑
m≤x

P (m)≤y

∑
d≤x/m
P (d)≤y

Λ(d) =
∑
m≤x

P (m)≤y

∑
p≤min{y,x/m}

log p
⌊ log(x/m)

log p

⌋

≤
∑
m≤x

P (m)≤y

π
(

min{y, x/m}
)

log(x/m).

Thus,

Ψ(x, y) log x =
∑
n≤x

P (n)≤y

(log n+ log(x/n)) ≤
∑
n≤x

P (n)≤y

(
1 + π(min{y, x/n})

)
log(x/n).

Using the estimates in [18] we see that the maximum of (1 + π(t))/(t/ log t) occurs
at t = 7, so that

1 + π(t) < 1.39t/ log t

for all t > 1. The above estimate then gives

Ψ(x, y) log x < 1.39
∑

x/y<n≤x
P (n)≤y

x/n+ 1.39
∑
n≤x/y
P (n)≤y

y log(x/n)/ log y.

We now note that if 1/ log y ≤ σ ≤ 1, then

y1−σ(x/n)σ ≥

{
x/n, if x/y < n ≤ x,
y log(x/n)/ log y, if n ≤ x/y.

Indeed, in the first case, since t1−σ is non-decreasing in t, we have (x/n)1−σ ≤
y1−σ. And in the second case, since t−σ log t is decreasing in t for t ≥ y, we have
(x/n)−σ log(x/n) ≤ y−σ log y.

We thus have

Ψ(x, y) log x < 1.39
∑
n≤x

P (n)≤y

y1−σ(x/n)σ < 1.39y1−σxσζ(σ, y).

This completes the proof. �
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