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Pythagoras
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

Thus, s(n) = σ(n)− n, where σ(n) is the sum of all of n’s

natural divisors.

The function s(n) was considered by Pythagoras, about 2500

years ago.
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Pythagoras:

noticed that s(6) = 1 + 2 + 3 = 6

(If s(n) = n, we say n is perfect.)

and noticed that

s(220) = 284, s(284) = 220.

(If s(n) = m, s(m) = n, and m 6= n, we say n, m are an amicable

pair and that they are amicable numbers.)
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Enrico Bombieri
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In 1976, Bombieri wrote:

“There are very many old problems in arithmetic whose interest

is practically nil, e.g. the existence of odd perfect numbers,

problems about the iteration of numerical functions, the

existence of infinitely many Fermat primes 22n
+ 1, etc.”
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Sir Fred Hoyle
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Hoyle wrote in 1962 that there were two difficult astronomical

problems faced by the ancients. One was a good problem, the

other was not so good.

The good problem: Why do the planets wander through the

constellations in the night sky?

The not-so-good problem: Why is it that the sun and the

moon are the same apparent size?
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Historically, perfect numbers, amicable numbers, and topics like

these (figurate numbers, e.g.) were important to the

development of elementary number theory. So, perhaps it could

be argued that they were “good” problems, in the sense of

Hoyle.

Sadly, I must agree with Bombieri that these topics are perhaps

not of great interest now to the advancement of number

theory. Yet, they and their brethren continue to fascinate. Let

us throw mathematical propriety out the window and revel a bit

in this quite unfashionable subject!

For they are fascinating to more than just number theorists. . .
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St. Augustine
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In the bible?

St. Augustine, ca. 1600 years ago in “City of God”:

“ Six is a perfect number in itself, and not because God created

all things in six days; rather the converse is true — God

created all things in six days because the number is perfect.”

It was also noted that 28, the second perfect number, is the

number of days in a lunar month. A coincidence?

Numerologists thought not.
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In Genesis it is related that Jacob gave his brother Esau a
lavish gift so as to win his friendship. The gift included 220
goats and 220 sheep.

Abraham Azulai, ca. 500 years ago:

“Our ancestor Jacob prepared his present in a wise way. This
number 220 is a hidden secret, being one of a pair of numbers
such that the parts of it are equal to the other one 284, and
conversely. And Jacob had this in mind; this has been tried by
the ancients in securing the love of kings and dignitaries.”

Ibn Khaldun, ca. 600 years ago in “Muqaddimah”:

“Persons who have concerned themselves with talismans affirm
that the amicable numbers 220 and 284 have an influence to
establish a union or close friendship between two individuals.”

13



Ibn Khaldun
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Al-Majriti, ca. 1050 years ago reports in “Aim of the Wise”

that he had put to the test the erotic effect of

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

(This was a very early application of number theory, far

predating public-key cryptography . . . )
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Euclid teaching
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Euclid, ca. 2300 years ago:

“If as many numbers as we please beginning from a unit be set

out continuously in double proportion, until the sum of all

becomes a prime, and if the sum multiplied into the last make

some number, the product will be perfect.”

For example: 1 + 2 + 4 = 7 is prime, so 7× 4 = 28 is perfect.

That is, if 1 + 2 + · · ·+ 2k = 2k+1 − 1 is prime, then

2k(2k+1 − 1) is perfect.

For example, take k = 43,112,608.
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TIME Magazine’s 29-th greatest invention of 2008.

18



If 2k+1 − 1 is prime, so too is k + 1, but not always conversely.

Exponents p with 2p − 1 prime:

2, 3, 5, 7, 13, 19, 31, 61, . . . , 43,112,609, . . .

19



20



Nicomachus
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Nicomachus, ca. 1900 years ago:

A natural number n is abundant if s(n) > n and is deficient if

s(n) < n. These he defined in “Introductio Arithmetica” and

went on to give what I call his ‘Goldilocks Theory’:

“ In the case of too much, is produced excess, superfluity,

exaggerations and abuse; in the case of too little, is produced

wanting, defaults, privations and insufficiencies. And in the

case of those that are found between the too much and the

too little, that is in equality, is produced virtue, just measure,

propriety, beauty and things of that sort — of which the most

exemplary form is that type of number which is called perfect.”
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Abundant numbers are like an animal with “ten mouths, or nine
lips, and provided with three lines of teeth; or with a hundred
arms, or having too many fingers on one of its hands. . .” while
with deficient numbers, “a single eye,. . . , or if he does not have
a tongue.”

Actually, Nicomachus only defined deficient and abundant for
even numbers, since he likely thought all odd numbers are
deficient. However, 945 is abundant; it is the smallest odd
abundant number.

Nicomachus conjectured that there are infinitely many perfect
numbers and that they are all given by the Euclid formula.
Euler, ca. 250 years ago, showed that all even perfect numbers
are given by the formula. We still don’t know if there are
infinitely many, or if there are any odd perfect numbers.
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Euler
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Eugène Catalan 25



Leonard Dickson
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In 1888, Catalan suggested that we iterate the function s and

conjectured that one would always end at 0 or a perfect

number. For example:

s(12) = 16, s(16) = 15, s(15) = 9, s(9) = 4, s(4) = 3, s(3) = 1,

and s(1) = 0. Perrott in 1889 pointed out that one might also

land at an amicable number. In 1907, Meissner said there may

well be cycles of length > 2. And in 1913, Dickson amended

the conjecture to say that the sequence of s-iterates is always

bounded.

Now known as the Catalan–Dickson conjecture, the least

number n for which it is in doubt is 276. Guy and Selfridge

have the counter-conjecture that in fact there are a positive

proportion of numbers for which the sequence is unbounded.
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Richard Guy, John Conway, & Elwyn Berlekamp
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John Selfridge
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Suppose that

s(n1) = n2, s(n2) = n3, . . . , s(nk) = n1,

where n1, n2, . . . , nk are distinct. We say these numbers form a

sociable cycle of length k, and that they are sociable numbers

of order k.

Thus, sociable numbers of order 1 are perfect and sociable

numbers of order 2 are amicable.

Though Meissner first posited in 1907 that there may be

sociable numbers of order > 2, Poulet found the first ones in

1918: one cycle of length 5 and another of length 28. The

smallest of order 5 is 12,496, while the smallest of order 28 is

14,316.
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Today we know of 175 sociable cycles of order > 2, all but 10

of which have order 4. (The smallest sociable number of order

4 was found by Cohen in 1970; it is 1,264,460.)

We know 46 perfect numbers and about 12 million amicable

pairs.

A modern perspective on these problems: what can we say

about their distribution in the natural numbers, in particular, do

they have density 0?
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What do you think is the density of the sociable numbers?

Up to 100 the only sociable numbers are the perfect numbers 6

and 28, so N(100) = 2 and N(100)/100 = 0.02.

Up to 1000 we pick up the perfect number 496 and the

Pythagorean amicables 220 and 284. So N(1000) = 5 and

N(1000)/1000 = 0.005.

Up to 10,000 we pick up the perfect number 8128 and the

amicable pairs

1184, 1210; 2620, 2924; 5020, 5564; 6232, 6368.

(The first was found by Paganini in 1860, the others by Euler.)

So N(10,000) = 14 and N(10,000)/10,000 = 0.0014.
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Are we sure we have the counts right? These are the correct

counts for perfects and amicables, and also for sociables of

order at most 600.

In fact, there are 81 starting numbers below 10,000 where we

have iterated s(n) over 600 times, and it is not yet clear what

is happening. Some of these are known not to be sociable, for

example the least number in doubt, 276. (It is not sociable

because it is not in the range of the function s.) But some of

them might end up being sociable after travelling a very long

distance through its s-chain. The least such possibility is 564.

So, we are having trouble even computing N(1000) much less

showing the sociable numbers have density 0.
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564 iteration
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How are we able to get as far as we have? One can see in the

chart that more than 100 numbers with more than 100 digits

have been factored, and the largest few have more than 120

digits.

These numbers have presumably not been given to us by an

adversary who wants to make life especially difficult. They

might be called natural natural numbers.

And, the workhorse algorithm for such numbers, which exploits

the number of points on varieties, is the Elliptic Curve Method

of Lenstra.
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Hendrik Lenstra
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From work of Descartes and Euler, it is not hard to see that

perfect numbers are sparsely distributed within the natural

numbers; that is, they have density 0. It is instructive though to

look at a result of Davenport from 1933 that implies the same.

For each real number u > 0, let Ds(u) denote the set of natural

numbers n with s(n)/n ≤ u. Davenport proved that Ds(u) has a

positive density Ds(u) within the natural numbers; properties

for the function Ds(u) include

continuous, strictly increasing, Ds(0+) = 0, Ds(+∞) = 1.

Note that continuity implies that the perfect numbers have

density 0.
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Harold Davenport

38



I. J. Schoenberg
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Davenport was preceded by Schoenberg in 1928 who had

analogous results for Euler’s function. Later, Erdős and

Wintner considered general multiplicative functions. This (and

the Turán proof of the Hardy–Ramanujan theorem) was the

dawn of the field of probabilistic number theory.

The Davenport distribution result also implies that the deficient

numbers (s(n)/n < 1) and the abundant numbers (s(n)/n > 1)

have positive densities. From the very start, people were

interested in computing these densities, especially since it

seemed that the even numbers are about equally split between

abundant and deficient. After work of Behrend in the 1930’s,

Wall et al. in the 1970’s, Deléglise in the 1990’s, and now

Kobayashi, we know that the density of the abundant numbers

is ≈ 0.2476.
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Mitsuo Kobayashi
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Herman te Riele
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But what of the density of amicable numbers or more generally,

sociable numbers?

In January 1973, te Riele published an example of a number n

such that the sequence n, s(n), s(s(n)), . . . is strictly increasing

for more than 5092 steps. At the end he remarks that Lenstra

communicated a proof to him that for every k there is some

number n, with the sequence n, s(n), s(s(n)), . . . strictly

increasing for at least k steps. I believe this is the earliest

citation of a result of Lenstra.

In 1975, Lenstra published this assertion as a problem in the

American Mathematics Monthly. Here is his solution from the

Monthly in 1977.
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Lemma. Suppose n = abm where a, b, m are pairwise coprime

and a2 | σ(b). Then s(n) = am′, where a, m′ are coprime.

Proof. We have a2 | σ(n) and a, n/a are coprime. Thus

a | σ(n)− n = s(n), and s(n)/a is coprime to a. �

Say we apply this to a = 12 and a number b coprime to 12 and

such that 122 | σ(b). For example, choose b as a prime ≡ −1

mod 122, or more easily, choose b = 547 (since

σ(547) = (548 − 1)/4). Then, for every number m coprime to

ab, we have abm = n < s(n) < s(s(n)), since 12 | n and 12 | s(n).
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This can be continued to the next step as follows. Choose c

coprime to ab with (ab)2 | σ(c). (So, c could be a prime that’s

−1 mod (ab)2, or an appropriate power of 7, or something

else.) Then let n = abcm, where m is coprime to abc.

By the lemma, s(n) = abm′ where m′ is coprime to ab, so s(n)

begins a climb of length at least 2. But a = 12 divides n, so

n < s(n).

Next, choose d coprime to abc with (abc)2 | σ(d) and consider

numbers n = abcdm with m coprime to abcd.

And so on.
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Let s1(n) = s(n), and for all positive integers k, n, if sk(n) is

defined and not 0, let sk+1(n) = s(sk(n)).

From Lenstra’s proof we have for each k, the set of numbers n

where n < s1(n) < · · · < sk(n) contains a set of positive

asymptotic density.

The Lenstra problem and solution inspired Erdős to prove a

remarkable and at first counter-intuitive theorem: Let Ck be

the set of integers n such that n < s1(n) < · · · < sk(n). Then

each set Ck has the same asymptotic density as the set C1, the

set of abundant numbers. That is, if n < s(n), then almost

surely, s(n) < s(s(n)) < . . . for k − 1 more steps.
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Now, if you have a sociable k-cycle with k ≥ 2, then it contains

an abundant number n not in Ck. Thus, for each fixed k, the

sociable numbers of order at most k have density 0.

The Erdős argument springs from the observation that if a is

any fixed positive integer, then a2 | σ(n) for a set of integers n

of asymptotic density 1. (Basically, since the primes that are

−1 mod a2 have positive density, n is almost surely divisible by

one of these primes to exactly the first power.)
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Erdős actually proved the still stronger result that for each

positive integer k and real number ε > 0, the set of integers n

with

sj(n) > (s(n)/n− ε)jn, j = 1,2, . . . , k

has asymptotic density 1.

He asserted in the paper that the same argument would show

that

sj(n) < (s(n)/n + ε)jn, j = 1,2, . . . , k.

In 1981, Lenstra told me he didn’t understand this, and I

enthusiastically offered to explain it to him. I realized then that

I also didn’t understand the proof. I later challenged Erdős who

also realized his idea didn’t work, and so this assertion was

later retracted by him.
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Paul Erdős
49



Any given natural number is either sociable or it is not sociable.

I ask again: Does the set of sociable numbers have density 0?

We think the answer is yes, but we have no heuristic for this.

(Despite the fact that Cohen and Lenstra have worked in this

subject, I don’t think the Cohen–Lenstra heuristics apply.)

As mentioned, one thing that makes this a hard question is that

we don’t have a simple algorithm that can test membership in

the set of sociable numbers. For example, is 564 sociable?
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Kobayashi, Pollack, P (2009):
But for a set of density 0, all sociable numbers are contained
within the odd abundant numbers.

Further, the density of all odd abundant numbers is ≈ 1/500.

One helpful tool in the proof was to essentially prove the Erdős
upper bound assertion in the context of sociable numbers. So,
in particular, if one has a deficient sociable number n, the
sequence n, s1(n), s2(n), . . . usually decays exponentially for a
long way, and so n is associated to a very small sociable
number in its cycle.

We’d like to the same for abundant numbers, but by backing
up to earlier members of the cycle. For even abundants, this
idea works fine, but not for odd abundants.
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Which one is Paul Pollack?
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Call a sociable number n special if

• n is odd abundant,

• the number preceding n in its cycle exceeds

n exp(1
2

√
log log logn log log log logn).

We prove that if the special sociable numbers have density 0,

then so too do all sociable numbers have density 0. Further,

we prove that the special sociable numbers have upper density

at most ≈ 1/6000.
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These are the famous digs at Mersennechus.
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P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the

normal behavior of the iterates of some arithmetic functions,

pp. 165–204 in Analytic number theory, Progr. Math. vol. 85,
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(The last two papers and these slides are available at

www.dartmouth.edu/∼carlp .)



2 = 10

3 = 11

5 = 101

7 = 111

13 = 1101

. . .

57


