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In the beginning . . .
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Pythagoras
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

Thus, s(n) = σ(n)− n, where σ(n) is the sum of all of n’s

natural divisors.

The function s(n) was considered by Pythagoras, about 2500

years ago.
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Pythagoras:

noticed that s(6) = 1 + 2 + 3 = 6

(If s(n) = n, we say n is perfect.)

and noticed that

s(220) = 284, s(284) = 220.

(If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.)
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Enrico Bombieri
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In 1976, Bombieri wrote:

“There are very many old problems in arithmetic whose interest

is practically nil, e.g. the existence of odd perfect numbers,

problems about the iteration of numerical functions, the

existence of infinitely many Fermat primes 22n + 1, etc.”
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Sir Fred Hoyle
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Hoyle wrote in 1962 that there were two difficult astronomical

problems faced by the ancients. One was a good problem, the

other was not so good.

The good problem: Why do the planets wander through the

constellations in the night sky?

The not-so-good problem: Why is it that the sun and the

moon are the same apparent size?
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Historically, perfect numbers, amicable numbers, and topics like

these (figurate numbers, e.g.) were important to the

development of elementary number theory. So, perhaps it could

be argued that they were “good” problems, in the sense of

Hoyle.

Further, the search for large numerical examples (say of

Mersenne primes) has greatly spurred number-theoretic

computing. There are also the twin problems of primality

testing and factoring that have been historically linked to these

topics.

In addition, they are fascinating to more than just number

theorists . . .
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St. Augustine
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In the bible?

St. Augustine, ca. 1600 years ago in “City of God”:

“ Six is a perfect number in itself, and not because God created

all things in six days; rather the converse is true — God

created all things in six days because the number is perfect.”

It was also noted that 28, the second perfect number, is the

number of days in a lunar month. A coincidence?

Numerologists thought not.
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In Genesis it is related that Jacob gave his brother Esau a
lavish gift so as to win his friendship. The gift included 220
goats and 220 sheep.

Abraham Azulai, ca. 500 years ago:

“Our ancestor Jacob prepared his present in a wise way. This
number 220 is a hidden secret, being one of a pair of numbers
such that the parts of it are equal to the other one 284, and
conversely. And Jacob had this in mind; this has been tried by
the ancients in securing the love of kings and dignitaries.”

Ibn Khaldun, ca. 600 years ago in “Muqaddimah”:

“Persons who have concerned themselves with talismans affirm
that the amicable numbers 220 and 284 have an influence to
establish a union or close friendship between two individuals.”
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Ibn Khaldun
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Al-Majriti, ca. 1050 years ago reports in “Aim of the Wise”

that he had put to the test the erotic effect of

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

(This was a very early application of number theory, far

predating public-key cryptography . . . )
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Nicomachus, ca. 1900 years ago:

A natural number n is abundant if s(n) > n and is deficient if

s(n) < n. These he defined in “Introductio Arithmetica”.
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Abundant numbers are like an animal with “ten mouths, or nine

lips, and provided with three lines of teeth; or with a hundred

arms, or having too many fingers on one of its hands. . .” while

with deficient numbers, “a single eye,. . . , or if he does not have

a tongue.”

It was not known till 1933 that the abundant, deficient, and

perfect numbers all possess an asymptotic density. This was

shown by Harold Davenport, and more precisely: For each real

number u ≥ 0, the density D(u) of integers n with s(n) ≥ un
exists, and D(u) is continuous and strictly increasing.

Mits Kobayashi: D(1) = 0.2476 . . . .

16



Eugène Catalan Leonard Dickson

17



In 1888, Catalan suggested that we iterate the function s and

conjectured that one would always end at 0 or a perfect

number. For example:

s(12) = 16, s(16) = 15, s(15) = 9, s(9) = 4, s(4) = 3, s(3) = 1,

and s(1) = 0. Perrott in 1889 pointed out that one might also

land at an amicable number. In 1907, Meissner said there may

well be cycles of length > 2. And in 1913, Dickson amended

the conjecture to say that the sequence of s-iterates is always

bounded.

Now known as the Catalan–Dickson conjecture, the least

number n for which it is in doubt is 276. Guy and Selfridge

have the counter-conjecture that in fact there are a positive

proportion of numbers for which the sequence is unbounded.
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Suppose that

s(n1) = n2, s(n2) = n3, . . . , s(nk) = n1,

where n1, n2, . . . , nk are distinct. We say these numbers form a

sociable cycle of length k, and that they are sociable numbers

of order k.

Thus, sociable numbers of order 1 are perfect and sociable

numbers of order 2 are amicable.

Though Meissner first posited in 1907 that there may be

sociable numbers of order > 2, Poulet found the first ones in

1918: one cycle of length 5 and another of length 28. The

smallest of order 5 is 12,496, while the smallest of order 28 is

14,316.
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Today we know of 217 sociable cycles of order > 2, all but 11

of which have order 4. (The smallest sociable number of order

4 was found by Henri Cohen in 1970; it is 1,264,460.)

We know 48 perfect numbers and about 12 million amicable

pairs.

A modern perspective on these problems: what can we say

about their distribution in the natural numbers, in particular,

does the set of sociable numbers have density 0?
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We know after Hornfeck & Wirsing: The number of perfect

numbers in [1, x] is O(xc/ log logx).

And P: The number of amicable numbers in [1, x] is less than

x/ exp((logx)1/3) for all large x.

In particular the sum of reciprocals of these two sets is

bounded.

This is not known for numbers in longer cycles, even if you fix

the length. Lets try and count all of the sociables.
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Up to 100 the only sociable numbers are the perfect numbers 6

and 28, so N(100) = 2 and N(100)/100 = 0.02.

Up to 1000 we pick up the perfect number 496 and the

Pythagorean amicables 220 and 284. So N(1000) = 5 and

N(1000)/1000 = 0.005.

Up to 10,000 we pick up the perfect number 8128 and the

amicable pairs

1184, 1210; 2620, 2924; 5020, 5564; 6232, 6368.

(The first was found by Paganini in 1860, the others by Euler.)

So N(10,000) = 14 and N(10,000)/10,000 = 0.0014.
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Are we sure we have the counts right? These are the correct

counts for perfects and amicables, and also for sociables of

order at most 600.

In fact, there are 81 starting numbers below 10,000 where we

have iterated s(n) over 600 times, and it is not yet clear what

is happening. Some of these are known not to be sociable, for

example the least number in doubt, 276. (It is not sociable

because it is not in the range of the function s.) But some of

them might end up being sociable after travelling a very long

distance through its s-chain. The least such possibility is 564.

(Creyaufmueller)

So, we are having trouble even computing N(1000) much less

showing the sociable numbers have density 0.

23



564 iteration
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In January 1973, te Riele published an example of a number n

such that the sequence n, s(n), s(s(n)), . . . is strictly increasing

for more than 5092 steps. At the end he remarks that Hendrik

Lenstra communicated a proof to him that for every k there is

some number n, with the sequence n, s(n), s(s(n)), . . . strictly

increasing for at least k steps. I believe this is the earliest

citation of a result of Lenstra.

Lenstra published this assertion as a Monthly problem in 1975,

and his solution in 1977.
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Let s1(n) = s(n), and for all positive integers k, n, if sk(n) is

defined and not 0, let sk+1(n) = s(sk(n)).

From Lenstra’s proof we have for each k, the set of numbers n

where n < s1(n) < · · · < sk(n) contains a set of positive

asymptotic density.

The Lenstra problem and solution inspired Erdős to prove a

remarkable and at first counter-intuitive theorem: Let Ck be

the set of integers n such that n < s1(n) < · · · < sk(n). Then

each set Ck has the same asymptotic density as the set C1, the

set of abundant numbers. That is, if n < s(n), then almost

surely, s(n) < s(s(n)) < . . . for k − 1 more steps.
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Now, if you have a sociable k-cycle with k ≥ 2, then it contains

an abundant number n not in Ck. Thus, for each fixed k, the

sociable numbers of order at most k have density 0.

Paul Erdős
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Any given natural number is either sociable or it is not sociable.

I ask again: Does the set of sociable numbers have density 0?

We think the answer is yes, but we have no heuristic for this.

(Despite the fact that Cohen and Lenstra have worked in this

subject, I don’t think the Cohen–Lenstra heuristics apply.)
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Kobayashi, Pollack, P:
But for a set of density 0, all sociable numbers are contained
within the odd abundant numbers.

Further, the density of all odd abundant numbers is ≈ 1/500.

One helpful tool in the proof was to essentially prove the
reverse of the Erdős abundant-perpetuation theorem for
deficient sociable numbers. So, in particular, if one has a
deficient sociable number n, the sequence n, s1(n), s2(n), . . .
usually decays exponentially for a long way, and so n is
associated to a very small sociable number in its cycle.

We’d like to do the same for abundant numbers, but by
backing up to earlier members of the cycle. For even
abundants, this idea works fine, but not for odd abundants.
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Mitsuo Kobayashi Paul Pollack

THANK YOU
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