Square values of Euler's function

Carl Pomerance, Dartmouth College

based on joint work with

P. Pollack

Euler's function: $\varphi(n)$ is the cardinality of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

It is ubiquitous in number theory.

Just one very cool result about φ : Computing $\varphi(n)$ is random polynomial time equivalent to factoring n. (No randomness needed for n=pq.) Here are some questions about φ :

- What is the minimal order of φ , the maximal order, the average order, the normal order?
- Is φ ever 1-to-1, that is, is there some number n such that $\varphi(m)=n$ has exactly one solution m? At the other extreme, how popular can values n be?
- How many values of φ are in [1, x]?

On the first bullet we know quite a lot.

After Mertens we know that $\varphi(n) \ge (1 + o(1))n/(e^{\gamma} \log \log n)$ as $n \to \infty$ and that this is best possible.

The maximal order of $\varphi(n)$ is n-1, achieved at the primes.

On average, $\varphi(n)$ behaves like $\frac{6}{\pi^2}n$ as $n\to\infty$. (The best error term in this average order is not known.)

Schoenberg (1928) showed that $\varphi(n)/n$ has a continuous distribution function, the forerunner of many similar results.

Carmichael (1922) conjectured that φ is never 1-to-1, that is, if $\varphi(m)=n$, then there is a number $m'\neq m$ with $\varphi(m')=n$. This is known to be true for all $n\leq 10^{10^{10}}$, a result of Ford, who also showed that if there is one counterexample, then a positive proportion of φ -values are counterexamples!

Erdős (1935) proved that there are infinitely many n such that $\varphi(m)=n$ has more than n^c solutions and he conjectured that this holds for each c<1. The best result to date here is by Baker & Harman who have shown there are infinitely many values n where there are more than $n^{0.7}$ pre-images under φ . It's known that the Erdős conjecture follows from the Elliott-Halberstam conjecture (Granville).

The set of values of φ was first considered by Pillai (1929): The number $V_{\varphi}(x)$ of φ -values in [1,x] is $O(x/(\log x)^c)$, where $c=\frac{1}{e}\log 2=0.254\ldots$.

Pillai's idea: There are not many values $\varphi(n)$ when n has few prime factors, and if n has more than a few prime factors, then $\varphi(n)$ is divisible by a high power of 2.

Since $\varphi(p) = p - 1$, we have $V_{\varphi}(x) \ge \pi(x+1) \gg x/\log x$. Erdős (1935): $V_{\varphi}(x) = x/(\log x)^{1+o(1)}$.

Erdős's idea: Deal with $\Omega(\varphi(n))$ (the total number of prime factors of $\varphi(n)$, with multiplicity). This paper, already mentioned in connection with popular φ -values, was seminal for the various ideas introduced. For example, the proof of the infinitude of Carmichael numbers owes much to this paper.

Again: $V_{\varphi}(x) = x/(\log x)^{1+o(1)}$.

But: What's lurking in that "o(1)"?

After work of Erdős & Hall, Maier & P, and Ford, we now know that $V_{\varphi}(x)$ is of magnitude

$$\frac{x}{\log x} \exp\left(A(\log_3 x - \log_4 x)^2 + B\log_3 x + C\log_4 x\right),\,$$

where \log_k is the k-fold iterated \log , and A,B,C are explicit constants.

Unsolved: Is there an asymptotic formula for $V_{\varphi}(x)$? Do we have $V_{\varphi}(2x) \sim 2V_{\varphi}(x)$?

The same results and unsolved problem pertain as well for the image of σ , the sum-of-divisors function.

In 1959, Erdős conjectured that the image of σ and the image of φ has an infinite intersection; that is, there are infinitely many pairs m,n with

$$\sigma(m) = \varphi(n).$$

It is amazing how many famous conjectures imply that the answer is yes!

Yes, if there are infinitely many twin primes:

If
$$p$$
, $p+2$ are both prime, then
$$\varphi(p+2)=p+1=\sigma(p).$$

Yes, if there are infinitely many Mersenne primes:

If
$$2^p-1$$
 is prime, then
$$\varphi(2^{p+1})=2^p=\sigma(2^p-1).$$

Yes, if the Extended Riemann Hypothesis holds.

It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some fantastic and unexpected corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely many solutions to $\sigma(m) = \varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: If there are infinitely many Siegel zeros, then there are infinitely many twin primes.

Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi,\sigma}(x)$ of common values of φ and σ in [1,x] exceeds $\exp((\log \log x)^a)$ for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi,\sigma}(x) = x/(\log x)^{1+o(1)}$.

Ford & Pollack (2012): Most values of φ are not values of σ and vice versa.

Square values

Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \le x$ with $\varphi(n)$ a square.

Remark. There are only $x^{0.5}$ squares below x. (!)

Here is an outline of the proof: Let Q denote the product of the primes to $B:=\log x/\log\log x$. Consider primes B with <math>p-1 having all prime factors at most B. There are a lot of these primes (Baker & Harman). Form squarefree numbers Qm, where m is composed of some of these primes and $Qm \le x/Q$. Since $Q=x^{o(1)}$, we find there are more than $x^{2/3-\epsilon}$ numbers Qm. Note that $\varphi(Qm)$ has all prime factors at most B.

For each number Qm so constructed, consider the exponent vector mod 2 for $\varphi(Qm)$ and let $d\mid Q$ be that divisor with the same exponent vector. Then $dQm\leq x$ and $\varphi(dQm)=d\varphi(Qm)$ is a square.

Optimizing the exponent "3" at the start of the proof gets the result.

We have just considered the number of $n \le x$ that φ maps to a square. But how many squares are φ -values?

Consider the function $V_{\square}(x)$, the number of integers $n \leq x$ with n^2 a φ -value.

In the same paper with Banks, Friedlander, & Shparlinski we showed that $V_{\square}(x) > x^{0.234}$ for all sufficiently large x.

This was considerably improved by Banks & Luca (2011) who showed that $V_{\square}(x) \gg x/(\log x)^4$. A similar result was obtained by a different method by Freiberg (2012).

But what of upper bounds?

Surely we must have $V_{\square}(x) = o(x)$ as $x \to \infty$, right?

That is, surely it must be that most squares are not φ -values. Right off the top, except for 1, we can eliminate all odd numbers, so the upper density of numbers n with n^2 a φ -value is at most $\frac{1}{2}$.

Let's look at an actual count. To 10^8 there are exactly 26,094,797 numbers n with n^2 a φ -value. That is, more than half of the even numbers to 100 million work.

Are you still sure that $V_{\square}(x) = o(x)$?

Might there be a positive proportion of integers n with n^2 a value of φ ?

Pollack & P (2013): No, the number of $n \le x$ with n^2 a φ -value is $O(x/(\log x)^{0.0063})$. The same goes for σ .

We also improved the lower bound of Banks & Luca, getting $V_{\square}(x) \gg x/(\log^2 x \log \log x)$.

An idea of the proofs:

The lower bound is fairly straightforward. Let $y = \log^2 x$ and consider primes $q \le x$ with $q \equiv 1 \pmod{p^2}$ for some prime $p \in [y,2y]$ and with $(q-1)/p^2$ not divisible by any prime in [y,2y]. There are a lot of these primes q and via Cauchy–Schwarz one can get lots of pairs of these primes q_1,q_2 corresponding to p_1^2,p_2^2 , respectively, and with $(q_1-1)/p_1^2=(q_2-1)/p_2^2$. Then $\varphi(q_1q_2)$ is a square.

This gets $\gg x/(\log x \log \log x)^2$ distinct choices of integers $\sqrt{\varphi(q_1q_2)} \le x$, and to gain an additional factor of $\log \log x$ one can consider more dyadic intervals up to $y^{1+\epsilon}$.

The upper bound $V_{\square}(x) \leq x/(\log x)^{0.0063}$ is considerably more difficult.

Say $\varphi(m) = n^2$ with $n \le x$. Let p denote the largest prime factor of n. Then one of the following 4 possibilities must occur:

- $\bullet p^3 \mid m,$
- $p^2 \mid m$ and \exists some prime $q \mid m, q \equiv 1 \pmod{p}$,
- \exists two primes $q_1, q_2 \mid m, \ q_1 \equiv q_2 \equiv 1 \pmod{p}$,
- \exists some prime $q \mid m, q \equiv 1 \pmod{p^2}$.

The first two cases do not contribute much, so most of the work is in the 3rd and 4th cases.

The 3rd case: $q_1, q_2 \mid m, \ q_1 \equiv q_2 \equiv 1 \pmod{p}$.

Write $q - 1 = apb^2$ with ap squarefree. Since $(q_1 - 1)(q_2 - 1) \mid n^2$, we have

$$n = ua_1a_2a_3b_1b_2p,$$

with $a_1a_2a_3p$ squarefree and

$$a_1a_3pb_1^2 + 1$$
 prime, $a_2a_3pb_2^2 + 1$ prime.

By the sieve and using $p > x^{1/\log \log x}$, the number of n is

$$\ll \sum_{u,a_1,a_2,a_3,b_1,b_2} \frac{x(\log\log x)^6}{ua_1a_2a_3b_1b_2(\log x)^3}.$$

You can see we're in a spot of trouble here! But using that we may assume that $\Omega(n) \leq \alpha \log \log x$, with α fixed and a tad larger than 1, we can use Rankin's trick to estimate the contribution here and see that it is

$$\ll \frac{x(\log\log x)^6}{(\log x)^{3-\alpha-\alpha\log(\alpha/6)}}.$$

We win for α small enough (but greater than 1), since $1 + \log 6 < 3$.

The last case when $q \mid m$, $q \equiv 1 \pmod{p^2}$: Here we have n = uabp, with $a(bp)^2 + 1$ prime. The sieve is trickier here and we need to consider sub-cases depending on the size of the largest prime factor of ua. But in the end it (barely) works.

We get the same result for numbers n for which n^2 is a σ -value. We also get the same for the number of squarefull numbers $n \le x^2$ with n a φ -value (and probably too for σ -values).

What about λ (Carmichael's universal exponent function)?

Note that the range of λ has density 0 (Erdős, P, Schmutz) and there are finer results, but we're asking about squares in the range. We have not proved anything, but I have a heuristic argument that the set of numbers n with n^2 a λ -value has asymptotic density $\frac{1}{2}$. That is, for almost all even n, $n^2 = \lambda(m)$ is solvable.

Happy birthday Ram!