Square values of Euler’s function

Carl Pomerance, Dartmouth College

based on joint work with

P. Pollack
Euler’s function: \(\varphi(n) \) is the cardinality of \((\mathbb{Z}/n\mathbb{Z})^\times \).

It is ubiquitous in number theory.

Just one very cool result about \(\varphi \):
Computing \(\varphi(n) \) is random polynomial time equivalent to factoring \(n \). (No randomness needed for \(n = pq \).)
Here are some questions about \(\varphi \):

- What is the minimal order of \(\varphi \), the maximal order, the average order, the normal order?

- Is \(\varphi \) ever 1-to-1, that is, is there some number \(n \) such that \(\varphi(m) = n \) has exactly one solution \(m \)? At the other extreme, how popular can values \(n \) be?

- How many values of \(\varphi \) are in \([1, x]\)?
On the first bullet we know quite a lot.

After Mertens we know that $\varphi(n) \geq (1 + o(1))n/(e^\gamma \log \log n)$ as $n \to \infty$ and that this is best possible.

The maximal order of $\varphi(n)$ is $n - 1$, achieved at the primes.

On average, $\varphi(n)$ behaves like $\frac{6}{\pi^2}n$ as $n \to \infty$. (The best error term in this average order is not known.)

Schoenberg (1928) showed that $\varphi(n)/n$ has a continuous distribution function, the forerunner of many similar results.
Carmichael (1922) conjectured that \(\varphi \) is never 1-to-1, that is, if \(\varphi(m) = n \), then there is a number \(m' \neq m \) with \(\varphi(m') = n \). This is known to be true for all \(n \leq 10^{10^{10}} \), a result of Ford, who also showed that if there is one counterexample, then a positive proportion of \(\varphi \)-values are counterexamples!

Erdős (1935) proved that there are infinitely many \(n \) such that \(\varphi(m) = n \) has more than \(n^c \) solutions and he conjectured that this holds for each \(c < 1 \). The best result to date here is by Baker & Harman who have shown there are infinitely many values \(n \) where there are more than \(n^{0.7} \) pre-images under \(\varphi \). It’s known that the Erdős conjecture follows from the Elliott–Halberstam conjecture (Granville).
The set of values of \(\varphi \) was first considered by Pillai (1929):

The number \(V_\varphi(x) \) of \(\varphi \)-values in \([1, x]\) is \(O(x/(\log x)^c) \), where \(c = \frac{1}{e} \log 2 = 0.254\ldots \).

Pillai’s idea: There are not many values \(\varphi(n) \) when \(n \) has few
prime factors, and if \(n \) has more than a few prime factors, then
\(\varphi(n) \) is divisible by a high power of 2.

Since \(\varphi(p) = p - 1 \), we have \(V_\varphi(x) \geq \pi(x + 1) \gg x/\log x \).

Erdős (1935): \(V_\varphi(x) = x/(\log x)^{1+o(1)} \).

Erdős’s idea: Deal with \(\Omega(\varphi(n)) \) (the total number of prime
factors of \(\varphi(n) \), with multiplicity). This paper, already
mentioned in connection with popular \(\varphi \)-values, was seminal for
the various ideas introduced. For example, the proof of the
infinitude of **Carmichael** numbers owes much to this paper.
Again: \(V_\varphi(x) = x/(\log x)^{1+o(1)} \).
But: What’s lurking in that “\(o(1) \)”?

After work of Erdős & Hall, Maier & P, and Ford, we now know that \(V_\varphi(x) \) is of magnitude

\[
\frac{x}{\log x} \exp \left(A(\log_3 x - \log_4 x)^2 + B \log_3 x + C \log_4 x \right),
\]

where \(\log_k \) is the \(k \)-fold iterated log, and \(A, B, C \) are explicit constants.

Unsolved: Is there an asymptotic formula for \(V_\varphi(x) \)?
Do we have \(V_\varphi(2x) \sim 2V_\varphi(x) \)?
The same results and unsolved problem pertain as well for the image of σ, the sum-of-divisors function.

In 1959, Erdős conjectured that the image of σ and the image of φ has an infinite intersection; that is, there are infinitely many pairs m, n with

$$\sigma(m) = \varphi(n).$$

It is amazing how many famous conjectures imply that the answer is yes!
Yes, if there are infinitely many twin primes:

If \(p, p + 2 \) are both prime, then
\[
\varphi(p + 2) = p + 1 = \sigma(p).
\]

Yes, if there are infinitely many Mersenne primes:

If \(2^p - 1 \) is prime, then
\[
\varphi(2^p + 1) = 2^p = \sigma(2^p - 1).
\]

Yes, if the Extended Riemann Hypothesis holds.
It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some fantastic and unexpected corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely many solutions to $\sigma(m) = \varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: If there are infinitely many Siegel zeros, then there are infinitely many twin primes.
Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi, \sigma}(x)$ of common values of φ and σ in $[1, x]$ exceeds $\exp((\log \log x)^a)$ for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi, \sigma}(x) = x/(\log x)^{1+o(1)}$.

Ford & Pollack (2012): Most values of φ are not values of σ and vice versa.
Square values

Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square.

Remark. There are only $x^{0.5}$ squares below x. (!)
Here is an outline of the proof: Let Q denote the product of the primes to $B := \log x / \log \log x$. Consider primes $B < p \leq (\log x)^3$ with $p - 1$ having all prime factors at most B. There are a lot of these primes (Baker & Harman). Form squarefree numbers Qm, where m is composed of some of these primes and $Qm \leq x/Q$. Since $Q = x^{o(1)}$, we find there are more than $x^{2/3-\epsilon}$ numbers Qm. Note that $\varphi(Qm)$ has all prime factors at most B.

For each number Qm so constructed, consider the exponent vector mod 2 for $\varphi(Qm)$ and let $d \mid Q$ be that divisor with the same exponent vector. Then $dQm \leq x$ and $\varphi(dQm) = d\varphi(Qm)$ is a square.

Optimizing the exponent “3” at the start of the proof gets the result.
We have just considered the number of $n \leq x$ that φ maps to a square. But how many squares are φ-values?

Consider the function $V_{\Box}(x)$, the number of integers $n \leq x$ with n^2 a φ-value.

In the same paper with Banks, Friedlander, & Shparlinski we showed that $V_{\Box}(x) > x^{0.234}$ for all sufficiently large x.

This was considerably improved by Banks & Luca (2011) who showed that $V_{\Box}(x) \gg x/(\log x)^4$. A similar result was obtained by a different method by Freiberg (2012).

But what of upper bounds?
Surely we must have $V\Box(x) = o(x)$ as $x \to \infty$, right?

That is, surely it must be that most squares are not φ-values. Right off the top, except for 1, we can eliminate all odd numbers, so the upper density of numbers n with n^2 a φ-value is at most $\frac{1}{2}$.

Let’s look at an actual count. To 10^8 there are exactly 26,094,797 numbers n with n^2 a φ-value. That is, more than half of the even numbers to 100 million work.

Are you still sure that $V\Box(x) = o(x)$?
Might there be a positive proportion of integers n with n^2 a value of φ?

Pollack & P (2013): No, the number of $n \leq x$ with n^2 a φ-value is $O(x/(\log x)^{0.0063})$. The same goes for σ.

We also improved the lower bound of Banks & Luca, getting $V\Box(x) \gg x/(\log^2 x \log \log x)$.
An idea of the proofs:

The lower bound is fairly straightforward. Let \(y = \log^2 x \) and consider primes \(q \leq x \) with \(q \equiv 1 \pmod{p^2} \) for some prime \(p \in [y, 2y] \) and with \((q - 1)/p^2 \) not divisible by any prime in \([y, 2y] \). There are a lot of these primes \(q \) and via Cauchy–Schwarz one can get lots of pairs of these primes \(q_1, q_2 \) corresponding to \(p_1^2, p_2^2 \), respectively, and with \((q_1 - 1)/p_1^2 = (q_2 - 1)/p_2^2 \). Then \(\varphi(q_1 q_2) \) is a square.

This gets \(\gg x / (\log x \log \log x)^2 \) distinct choices of integers \(\sqrt{\varphi(q_1 q_2)} \leq x \), and to gain an additional factor of \(\log \log x \) one can consider more dyadic intervals up to \(y^{1+\epsilon} \).
The upper bound $V_{\square}(x) \leq x/(\log x)^{0.0063}$ is considerably more difficult.

Say $\varphi(m) = n^2$ with $n \leq x$. Let p denote the largest prime factor of n. Then one of the following 4 possibilities must occur:

- $p^3 \mid m$,
- $p^2 \mid m$ and \exists some prime $q \mid m$, $q \equiv 1 \pmod{p}$,
- \exists two primes $q_1, q_2 \mid m$, $q_1 \equiv q_2 \equiv 1 \pmod{p}$,
- \exists some prime $q \mid m$, $q \equiv 1 \pmod{p^2}$.

The first two cases do not contribute much, so most of the work is in the 3rd and 4th cases.
The 3rd case: $q_1, q_2 \mid m$, $q_1 \equiv q_2 \equiv 1 \pmod{p}$.

Write $q - 1 = apb^2$ with ap squarefree. Since $(q_1 - 1)(q_2 - 1) \mid n^2$, we have

$$n = ua_1a_2a_3b_1b_2p,$$

with $a_1a_2a_3p$ squarefree and

$$a_1a_3pb_1^2 + 1 \text{ prime, } a_2a_3pb_2^2 + 1 \text{ prime}.$$

By the sieve and using $p > x^{1/\log \log x}$, the number of n is

$$\ll \sum_{u,a_1,a_2,a_3,b_1,b_2} \frac{x(\log \log x)^6}{ua_1a_2a_3b_1b_2(\log x)^3}.$$
You can see we’re in a spot of trouble here! But using that we may assume that $\Omega(n) \leq \alpha \log \log x$, with α fixed and a tad larger than 1, we can use Rankin’s trick to estimate the contribution here and see that it is

$$x(\log \log x)^6 \ll \frac{x(\log \log x)^6}{(\log x)^{3-\alpha-\alpha \log(\alpha/6)}}.$$

We win for α small enough (but greater than 1), since $1 + \log 6 < 3$.

The last case when $q \mid m$, $q \equiv 1 \pmod{p^2}$: Here we have $n = uabp$, with $a(bp)^2 + 1$ prime. The sieve is trickier here and we need to consider sub-cases depending on the size of the largest prime factor of ua. But in the end it (barely) works.
We get the same result for numbers n for which n^2 is a σ-value. We also get the same for the number of squarefull numbers $n \leq x^2$ with n a φ-value (and probably too for σ-values).

What about λ (Carmichael’s universal exponent function)?

Note that the range of λ has density 0 (Erdős, P, Schmutz) and there are finer results, but we’re asking about squares in the range. We have not proved anything, but I have a heuristic argument that the set of numbers n with n^2 a λ-value has asymptotic density $\frac{1}{2}$. That is, for almost all even n, $n^2 = \lambda(m)$ is solvable.
Happy birthday Ram!