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Euler’s function: ϕ(n) is the cardinality of (Z/nZ)×.

It is ubiquitous in number theory.

Just one very cool result about ϕ:

Computing ϕ(n) is random polynomial time equivalent to

factoring n. (No randomness needed for n = pq.)
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Here are some questions about ϕ:

• What is the minimal order of ϕ, the maximal order, the

average order, the normal order?

• Is ϕ ever 1-to-1, that is, is there some number n such that

ϕ(m) = n has exactly one solution m? At the other

extreme, how popular can values n be?

• How many values of ϕ are in [1, x]?
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On the first bullet we know quite a lot.

After Mertens we know that ϕ(n) ≥ (1 + o(1))n/(eγ log logn)

as n→∞ and that this is best possible.

The maximal order of ϕ(n) is n− 1, achieved at the primes.

On average, ϕ(n) behaves like 6
π2n as n→∞. (The best error

term in this average order is not known.)

Schoenberg (1928) showed that ϕ(n)/n has a continuous

distribution function, the forerunner of many similar results.
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Carmichael (1922) conjectured that ϕ is never 1-to-1, that is, if

ϕ(m) = n, then there is a number m′ 6= m with ϕ(m′) = n. This

is known to be true for all n ≤ 101010
, a result of Ford, who

also showed that if there is one counterexample, then a positive

proportion of ϕ-values are counterexamples!

Erdős (1935) proved that there are infinitely many n such that

ϕ(m) = n has more than nc solutions and he conjectured that

this holds for each c < 1. The best result to date here is by

Baker & Harman who have shown there are infinitely many

values n where there are more than n0.7 pre-images under ϕ.

It’s known that the Erdős conjecture follows from the

Elliott–Halberstam conjecture (Granville).
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The set of values of ϕ was first considered by Pillai (1929):
The number Vϕ(x) of ϕ-values in [1, x] is O(x/(logx)c), where
c = 1

e log 2 = 0.254 . . . .

Pillai’s idea: There are not many values ϕ(n) when n has few
prime factors, and if n has more than a few prime factors, then
ϕ(n) is divisible by a high power of 2.

Since ϕ(p) = p− 1, we have Vϕ(x) ≥ π(x+ 1)� x/ logx.
Erdős (1935): Vϕ(x) = x/(logx)1+o(1).

Erdős’s idea: Deal with Ω(ϕ(n)) (the total number of prime
factors of ϕ(n), with multiplicity). This paper, already
mentioned in connection with popular ϕ-values, was seminal for
the various ideas introduced. For example, the proof of the
infinitude of Carmichael numbers owes much to this paper.
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Again: Vϕ(x) = x/(logx)1+o(1).

But: What’s lurking in that “o(1)”?

After work of Erdős & Hall, Maier & P, and Ford, we now

know that Vϕ(x) is of magnitude

x

logx
exp

(
A(log3 x− log4 x)2 +B log3 x+ C log4 x

)
,

where logk is the k-fold iterated log, and A,B,C are explicit

constants.

Unsolved: Is there an asymptotic formula for Vϕ(x)?

Do we have Vϕ(2x) ∼ 2Vϕ(x)?
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The same results and unsolved problem pertain as well for the

image of σ, the sum-of-divisors function.

In 1959, Erdős conjectured that the image of σ and the image

of ϕ has an infinite intersection; that is, there are infinitely

many pairs m,n with

σ(m) = ϕ(n).

It is amazing how many famous conjectures imply that the

answer is yes!
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).

Yes, if there are infinitely many Mersenne primes:

If 2p − 1 is prime, then

ϕ(2p+1) = 2p = σ(2p − 1).

Yes, if the Extended Riemann Hypothesis holds.
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It would seem a promising strategy to prove that there are at

most finitely many solutions to σ(m) = ϕ(n); it has some

fantastic and unexpected corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely

many solutions to σ(m) = ϕ(n).

We gave several proofs, but one proof uses a conditional result

of Heath-Brown: If there are infinitely many Siegel zeros, then

there are infinitely many twin primes.

9



Some further results:

Garaev (2011): For each fixed number a, the number Vϕ,σ(x)

of common values of ϕ and σ in [1, x] exceeds exp ((log logx)a)

for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime

k-tuples conjecture, Vϕ,σ(x) = x/(logx)1+o(1).

Ford & Pollack (2012): Most values of ϕ are not values of σ

and vice versa.
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Square values

Banks, Friedlander, P, & Shparlinski (2004): There are more

than x0.7 integers n ≤ x with ϕ(n) a square.

Remark. There are only x0.5 squares below x. (!)
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Here is an outline of the proof: Let Q denote the product of the

primes to B := logx/ log logx. Consider primes B < p ≤ (logx)3

with p− 1 having all prime factors at most B. There are a lot

of these primes (Baker & Harman). Form squarefree numbers

Qm, where m is composed of some of these primes and

Qm ≤ x/Q. Since Q = xo(1), we find there are more than x2/3−ε

numbers Qm. Note that ϕ(Qm) has all prime factors at most B.

For each number Qm so constructed, consider the exponent

vector mod 2 for ϕ(Qm) and let d | Q be that divisor with the

same exponent vector. Then dQm ≤ x and ϕ(dQm) = dϕ(Qm)

is a square.

Optimizing the exponent “3” at the start of the proof gets the

result.
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We have just considered the number of n ≤ x that ϕ maps to a

square. But how many squares are ϕ-values?

Consider the function V�(x), the number of integers n ≤ x with

n2 a ϕ-value.

In the same paper with Banks, Friedlander, & Shparlinski we

showed that V�(x) > x0.234 for all sufficiently large x.

This was considerably improved by Banks & Luca (2011) who

showed that V�(x)� x/(logx)4. A similar result was obtained

by a different method by Freiberg (2012).

But what of upper bounds?
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Surely we must have V�(x) = o(x) as x→∞, right?

That is, surely it must be that most squares are not ϕ-values.

Right off the top, except for 1, we can eliminate all odd

numbers, so the upper density of numbers n with n2 a ϕ-value

is at most 1
2.

Let’s look at an actual count. To 108 there are exactly

26,094,797 numbers n with n2 a ϕ-value. That is, more than

half of the even numbers to 100 million work.

Are you still sure that V�(x) = o(x)?
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Might there be a positive proportion of integers n with n2 a

value of ϕ?

Pollack & P (2013): No, the number of n ≤ x with n2 a

ϕ-value is O(x/(logx)0.0063). The same goes for σ.

We also improved the lower bound of Banks & Luca, getting

V�(x)� x/(log2 x log logx).
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An idea of the proofs:

The lower bound is fairly straightforward. Let y = log2 x and

consider primes q ≤ x with q ≡ 1 (mod p2) for some prime

p ∈ [y,2y] and with (q − 1)/p2 not divisible by any prime in

[y,2y]. There are a lot of these primes q and via

Cauchy–Schwarz one can get lots of pairs of these primes q1, q2

corresponding to p2
1, p

2
2, respectively, and with

(q1 − 1)/p2
1 = (q2 − 1)/p2

2. Then ϕ(q1q2) is a square.

This gets � x/(logx log logx)2 distinct choices of integers√
ϕ(q1q2) ≤ x, and to gain an additional factor of log logx one

can consider more dyadic intervals up to y1+ε.
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The upper bound V�(x) ≤ x/(logx)0.0063 is considerably more

difficult.

Say ϕ(m) = n2 with n ≤ x. Let p denote the largest prime

factor of n. Then one of the following 4 possibilities must

occur:

• p3 | m,
• p2 | m and ∃ some prime q | m, q ≡ 1 (mod p),

• ∃ two primes q1, q2 | m, q1 ≡ q2 ≡ 1 (mod p),

• ∃ some prime q | m, q ≡ 1 (mod p2).

The first two cases do not contribute much, so most of the

work is in the 3rd and 4th cases.
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The 3rd case: q1, q2 | m, q1 ≡ q2 ≡ 1 (mod p).

Write q − 1 = apb2 with ap squarefree. Since

(q1 − 1)(q2 − 1) | n2, we have

n = ua1a2a3b1b2p,

with a1a2a3p squarefree and

a1a3pb
2
1 + 1 prime, a2a3pb

2
2 + 1 prime.

By the sieve and using p > x1/ log logx, the number of n is

�
∑

u,a1,a2,a3,b1,b2

x(log logx)6

ua1a2a3b1b2(logx)3
.
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You can see we’re in a spot of trouble here! But using that we

may assume that Ω(n) ≤ α log logx, with α fixed and a tad

larger than 1, we can use Rankin’s trick to estimate the

contribution here and see that it is

�
x(log logx)6

(logx)3−α−α log(α/6)
.

We win for α small enough (but greater than 1), since

1 + log 6 < 3.

The last case when q | m, q ≡ 1 (mod p2): Here we have

n = uabp, with a(bp)2 + 1 prime. The sieve is trickier here and

we need to consider sub-cases depending on the size of the

largest prime factor of ua. But in the end it (barely) works.
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We get the same result for numbers n for which n2 is a σ-value.

We also get the same for the number of squarefull numbers

n ≤ x2 with n a ϕ-value (and probably too for σ-values).

What about λ (Carmichael’s universal exponent function)?

Note that the range of λ has density 0 (Erdős, P, Schmutz)

and there are finer results, but we’re asking about squares in

the range. We have not proved anything, but I have a heuristic

argument that the set of numbers n with n2 a λ-value has

asymptotic density 1
2. That is, for almost all even n, n2 = λ(m)

is solvable.
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Happy birthday Ram!
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