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Being the centennial of Paul Erdős, this talk is dedicated to

him. He more than anyone else taught me how to think

statistically about elementary number theory.

Paul Erdős, 1913–1996
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The field of statistics concerns itself with intelligently gathering
data, and making sense of it in ways that might lead us to valid
inferences about underlying truths.

In number theory, our data might be ranks, orders, zeros,
discriminants, etc., but it seems this statistical way of thinking
all began centuries ago by studying how the prime numbers are
distributed within the natural numbers.

Euclid proved there are infinitely many primes, and Euler
showed that their reciprocal sum to x grows like log logx, which
indicates that their counting function to x should grow like
x/ logx. Gauss came to an even finer version of this conjecture
after poring over tables of primes. Though proved at one level
as the prime number theorem, we are still struggling to prove
this law at a deeper level; this is the Riemann Hypothesis.
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Though fundamental of course, prime numbers are not the only
fish in the sea of integers. In fact, number theory began
millennia ago with the study of other special numbers.

Perhaps the very first function ever described in mathematics,
done so by Pythagoras, is s(n). This takes a positive integer n
and sends it to the sum of the positive divisors of n that are
smaller than n. It is not clear why Pythagoras was interested in
this function, but he noted that 220 and 284 form an amicable
pair in that

s(220) = 284, s(284) = 220.

Centuries after Pythagoras, but still 2300 years ago, Euclid
went on to discuss solutions to s(n) = n, the perfect numbers.
Others in antiquity discussed the deficient numbers (s(n) < n)
and the abundant numbers (s(n) > n).
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What is a modern number theorist to make of these problems?
A fruitful avenue is to think statistically.

For example, Davenport proved in 1934 that not only do the
deficient numbers and abundant numbers each possess a
positive asymptotic density, but more generally, for each fixed
real u ≥ 0, the set

{n : s(n) < un}

has an asymptotic density that varies continuously with u, and
is strictly increasing. In particular, the perfect numbers have
asymptotic density 0.

Davenport’s theorem, which was based on an earlier result of
Schoenberg on Euler’s function ϕ, was later given an ultimate
generalization by Erdős & Wintner.
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This talk will not survey the entire field of statistical problems

in elementary number theory, but rather a small handful of

papers in the last year or so in which I have participated. For a

broader, albeit Erdős-centric view, see

P. Pollack and C. Pomerance, Paul Erdős and the rise of

statistical thinking in elementary number theory, submitted.

All of the new papers mentioned in this talk are available on

my home page; these slides are there too.
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In 1932, D. H. Lehmer asked if there are any composite

numbers n with ϕ(n) | n− 1. Here ϕ is Euler’s function, and it

is clear that ϕ(n) | n− 1 for n = 1 and n prime. We still don’t

know if there are any such n that are composite.

How then can we do statistics if there are no data?

We can try and prove that there are not very many such

numbers.

The main idea that has been used in this regard is that if d is a

divisor of such a number n, then n is in a residue class modulo

dϕ(d). Further, some d exists near
√
n. Using these and some

other Erdős-type tricks, I showed in 1977 that the number of

such numbers in [1, x] is at most x1/2(logx)c.
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Since then, there have been a series of papers lowering the
exponent c on logx, by
Z. Shan (1985), W. D. Banks & F. Luca (2007), and
W. D. Banks, A. D. Güloglu, & C. W. Nevans (2008).

The record result so far is in

F. Luca and C. Pomerance, On composite integers n for which
ϕ(n) | n− 1, Bol. Soc. Mat. Mex., 17 (2011), 13–21,

where it is proved that the number of such n in [1, x] is at most
x1/2(logx)−1/2+o(1) as x→∞.

I wrote in 1977 that it would seem to take a new idea to
reduce the exponent 1/2 on x; we’re still waiting for this!
Conjecturally the count should be bounded by (logx)O(1),
if not something smaller.
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The problem of counting those n with ϕ(n) | n− 1 can be

generalized to those n with ϕ(n) | n− a, with a a fixed integer.

Sometimes there is a “trivial” infinite family of solutions, such

as the primes with a = 1, or the numbers 6p with p > 3 prime

and a = 6, but these are easily classified.

The above papers all hold for this more general problem of

counting “sporadic” solutions to ϕ(n) | n− a.

One can also generalize to other arithmetic functions, perhaps

the most prominent being σ(n), the sum-of-divisors function.

We have σ(n) = s(n) + n, where s is the function of Pythagoras

mentioned at the start of the talk. We like σ better because it

is multiplicative.
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Here we are counting numbers n in [1, x] with

σ(n) ≡ a (mod n).

After removing “trivial” solutions, such as 6p when a = 12, the

number of sporadic solutions is also bounded as with the ϕ

version of the theorem, namely by x1/2+o(1). The proof uses

the same overall scheme as in the 1977 paper, but with some

new elements, mostly dealing with the radical of a number (the

largest squarefree divisor).

This is in

A. Anavi, P. Pollack, and C. Pomerance, On congruences of

the form σ(n) ≡ a (mod n), Int. J. Number Th. 9 (2012),

115–124.
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One can also ask about solutions n to σ(n) ≡ a (mod n) with
σ(n) odd. For example, Chowla suggested the function
s′(n) = σ(n)− n− 1 could be of interest, and Cattaneo defined
a number to be quasiperfect if s′(n) = n (so that
σ(n) = 2n+ 1). It is trivial to see that for any such n, we have
σ(n) odd.

Since σ(n) is odd if and only if n is either a square or twice a
square, we automatically have the count up to x being O(x1/2).
In the very recent paper

P. Pollack and C. Pomerance, On the distribution of some
integers related to perfect and amicable numbers, submitted,

it is shown that the number of such n up to x is at most
x1/4+o(1) as x→∞.
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In 1973, Erdős showed that a positive proportion of numbers
are not of the form s(n), where s is the sum-of-proper-divisors
function that was considered by Pythagoras. It was known
already from the 1930s that almost all odd numbers are in the
image of s. It is still not known if the image of s has an
asymptotic density or if it contains a positive proportion of
even numbers.

One can ask this type of question for other arithmetic
functions; that is, what are the statistics for the image?

Erdős showed in 1935 that the number of values of ϕ or of σ in
[1, x] is x/(logx)1+o(1) as x→∞. Much work has been done in
trying to pin down the “o(1)” here, the current champion being
K. Ford, but we still don’t have an asymptotic formula for the
count.
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In his thesis from 1976, H. J. J. te Riele asked if the result on

s(n) could be extended to s∗(n). This is the sum of those

divisors d of n with 1 ≤ d < n and (d, n/d) = 1. In the recent

paper

C. Pomerance and H.-S. Yang, Variant of a theorem of Erdős

on the sum-of-proper-divisors function, Math. Comp., to

appear,

we show that a positive proportion of even numbers are missing

from the image of s∗(n) and that a positive proportion of even

numbers are present. (It is easy to see as with s(n) that almost

all odd numbers are in the image.) This paper will be presented

in a session tomorrow afternoon by the second-named author.
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This paper with Yang actually has some real data, and is not

just an asymptotic estimate for the distribution of an

interesting set of numbers. Based on our data, we conjecture

that the image of s has asymptotic density close to 5
6 and that

the image of s∗ has asymptotic density close to 99
100.
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For our last problem, consider the function ϕ(n) of Euler. This

function is far from being monotone. But here are two

questions:

How long can an interval be where ϕ is monotone?

How large may a subset of [1, x] be on which ϕ is monotone?

These questions are addressed in the recent paper

P. Pollack, C. Pomerance, and E. Treviño, Sets of monotonicity

for Euler’s totient function, Ramanujan J., to appear.

We give a fairly precise answer to the first question.
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Let γ be the Euler–Mascheroni constant and let

α =
∑

p prime

1

p
log

p

p− 1
.

Then the longest interval in [1, x] on which ϕ is increasing has

length

log3 x

log6 x
+ (α− γ + o(1))

log3 x

(log6 x)2

as x→∞. Here logk indicates iteration. The number α− γ is

.0028428289 . . . . This result also holds for ϕ decreasing on an

interval. The proof is modeled after a paper of Erdős from

1958 that considers intervals on which ϕ does not vary

appreciably.
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It is easy to find a large subset of [1, x] on which ϕ is
nondecreasing, namely the primes. After some numerical
experiments it seems that the size of the champion set is
always at most π(x) + 64, where π is the prime-counting
function. We cannot prove that the excess above π(x) is
bounded, but we did prove that the count is at most
x/(logx)1+o(1) as x→∞. Is the sum of reciprocals of the
numbers in a champion such set log logx+O(1)?

For nonincreasing, we showed the size of the largest set in [1, x]
is greater than x0.7 and smaller than
x/ exp((1

2 + o(1))
√

logx log logx). The exponent 0.7 comes
from a recent paper of Baker & Harman from which it can be
shown that there are x0.7 integers in [1, x] at which ϕ is
constant. Is it true that the size for nonincreasing is at most
twice, say, the size for constant? We don’t know.
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THANK YOU
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