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Let's begin with products. Take the N x N multiplication table.
It has N2 entries. It is a symmetric matrix, so most entries
appear at least twice. How many distinct entries does it have?



Let M(N) be the number of distinct entries in the N x N
multiplication table.

X 1 2 3 4 5
1 1 2 3 4 5
212 4 6 8 10
3|1 3 6 9 12 15
4 | 4 8 12 16 20
5 | 5 10 15 20 25

So, M(5) = 14.



X 1 2 3 4 5 6 ¢ 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 o6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
3 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 | 10 20 30 40 50 60 (O 80 90 100

So, M(10) = 42.



What would you conjecture about M(N) asymptotically?

Maybe
M(N 1
lim ( )=—?
N —00 N2 3
Maybe
: M(N)
lim = 07
N—oo N2 ¢=
Maybe
M(N) _

lim = 07

N —00 N2



Here are some values of M(N)/N? (Brent & Kung 1981):

N M(N) | M(N)/N?

1 1 1.0000

3 6 0.6667

7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117
127 4646 0.2881
255 17577 0.2703
511 67591 0.2588
1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 | 15202049 0.2266



And some more values (Brent & Kung 1981, Brent 2012):

N M(N) | M(N)/N?
214 _1 59410556 0.2213
215 _ 1 232483839 0.2165
216 _1q 011689011 0.2123
217 _1q 3581049039 0.2084
218 _ 1 14081089287 0.2049
219 _ 1 55439171530 0.2017
220 _1q 218457593222 0.1987
221 _ 1 861617935050 0.1959
222 _ 1 3400917861267 0.1933
223 _ 1 13433148229638 0.1909
224 _ 1 53092686926154 0.1886
225 _ 1 | 209962593513291 0.1865



And some statistically sampled values (Brent & P 2012):

N | M(N)/N? N | M(N)/N?

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269
2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186
21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133
210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095



It's fairly “clear” that M(N) = o(N?) as N — oo.



Do we have M(N) of the shape N2—¢17
Of the ahape N2/(log N)¢2?
Of the ahape N2/(loglog N)¢37?

N | M(N)/N? c1
210 0.2473 | 2.02 x 101
2107 0.1311 | 2.93 x 102
2107 0.0798 | 3.65 x 103
210% 0.0517 | 4.27 x 104
210° 0.0348 | 4.84 x 105
210° 0.0240 | 5.38 x 106
2107 0.0171 | 5.87 x 10~ 7
210° 0.0122 | 6.36 x 10~8



Do we have M(N) of the shape N2—¢17
Of the ahape N2/(log N)¢2?

Of the ahape N2/(loglog N)¢37?

N | M(N)/N? c1 co
210 0.2473 | 2.02x 101 | 887
2102 0.1311 | 2.93x 10~2 | .479
2107 0.0798 | 3.65 x 103 | .387
210% 0.0517 | 4.27 x 104 | .335
210° 0.0348 | 4.84 x 10-5 | .301
210° 0.0240 | 5.38 x10~6 | 277
2107 0.0171 | 5.87 x 10~7 | .258
210° 0.0122 | 6.36 x 10-8 | .244
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Do we have M(N) of the shape N2—¢17

Of the ahape N2/(log N)¢2?

Of the ahape N2/(loglog N)¢37?

N | M(N)/N? c1 co c3
210 0.2473 | 2.02x10°1 | 887 | 2.12
2107 0.1311 | 2.93x10-2 | .479 | 1.41
2107 0.0798 | 3.65 x 10~3 | .387 | 1.35
210% 0.0517 | 427 x10~% | .335 | 1.36
210° 0.0348 | 4.84 x10-5% | .301 | 1.39
210° 0.0240 | 5.38x 106 | 277 | 1.44
2107 0.0171 | 5.87 x10~7 | 258 | 1.48
210° 0.0122 | 6.36 x 1078 | 244 | 1.52
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Paul Erdds studied this problem in two papers, one in 1955, the
other in 1960.

Paul Erdos, 1913—-1996
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In 1955, Erd6s proved (in Hebrew) that M(N)/N2 — 0 as
N — oo and indicated that it was likely that M () is of the
shape N2/(log N)¢.

In 1960, at the prodding of Linnik and Vinogradov, Erdds
identified (in Russian) the value of “¢". Let

1 1+ loglog?2
log 2
Then M(N2) = N2/(log N)cto(1) as N — .

= 0.08607....

CcC =
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In work of Tenenbaum progress was made (in French) in nailing
down the “o(1)".

In 2008, Ford showed (in English) that M () is of order of
magnitude

N2
(log N)<(loglog N)3/2°

No matter the language, we still don’'t know an asymptotic
estimate for M(NN), despite this just being about the
multiplication table!
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So how can the fact that M(N) is small compared to N2 be
explained?

It all comes down to the function Q2(n), the total number of
prime factors of n, counted with multiplicity. For example,

Q(8) =3, Q(9) =2, Q(10) =2, Q(11) =1, Q(12) = 3.

Some higher values: ©2(1024) = 10, €©2(1009) = 1, and
Q27T —1) =1, Q2" =17.

But what is Q(n) usually? That is, can Q2(n) be approximately
predicted from the size of n if we throw out thin sets like
primes and powers of 27

Indeed it can.
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In 1917, Hardy and Ramanujan proved that the normal order of
Q(n) is loglogn. That is, for each € > 0, the set of integers n
with

‘Q(n) —loglogn| < eloglogn

has asymptotic density 1.

So, this explains the multiplication table. Most products nin»
have both ny > N1/2 and n, > N1/2, and most of these have
Q(nq1) and Q2(no) fairly close to loglog N (note that

log log(N1/2) differs from loglog N by less than 1). So most of
the products formed have about 21loglog N prime factors,
which is an unusual value to have for a number below NZ2.
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G. H. Hardy

S. Ramanujan
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So, loglog N for integers below N is the center of the
distribution. To quantify M(INN) one needs to know about
estimates for the tail, and that's where the constant c arises.

I should take a small diversion from our progress here and
mention one of the most beautfiful theorems in number theory,
the Erd6s—Kac theorem. It says that the “standard deviation”
for Q(n) for integers up to N is (loglog N)1/2 and that the
distribution is Gaussian. Namely, for each real number u, the
set

{n : Q(n) < loglogn + u(loglog n)l/Q}

has asymptotic density equal to 1 /u e_tQ/2 dt
V21 J—o00 .
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Einstein:

“God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdbs & Kac: Maybe so but something’'s going on with the
primes.

20



Einstein: “God does not play dice with the universe.”

Erdbs & Kac: Maybe so but something’'s going on with the
primes.

(Note: I made this up, it was a joke ...)
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Prime numbers, the most mysterious figures
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Keeping with the theme of multiplication, what can be said
about sets of positive integers that are product-free? This
means that for any two members of the set, their product is
not in the set. It is as far as you can get from being closed
under multiplication.

It is easy to find such sets, for example the set of primes. But
how dense can such a set be?

Consider the set
{n - Q(n) is odd}.

This set is product-free and has asymptotic density %

It’s not clear if this is the best one can do, but at least there’'s
a fairly simple proof that any product-free set must have upper
asymptotic density strictly smaller than 1.
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To make further progress, and perhaps to make things a little
simpler, lets consider a periodic version of the problem.

Let D(n) denote the maximal density of a product-free set that
consists of residue classes modulo n.

For example, take the integers that are 2 (mod 3). The
product of any two of them is 1 (mod 3), so is not in the set.
And this set has asymptotic density 3.

We have D(3) = 1.

Can we do better with higher moduli?
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Well, the set of integers that are 2 or 3 (mod 5) is product-free
and has density 2. That is D(5) = 2.

For n =7, we have D(7) = 3. Namely, consider the classes 3,
5, or 6 (mod 7).

It is not hard to prove that liminf,_ec D(n) = 3.

So, again we have met what seems to be some sort of

boundary: 3.

Do we have D(n) < % for all n?
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P, Schinzel (2011): We have D(n) < % for all n except
possibly those n divisible by the square of a number with at
least 6 distinct prime factors. Further, the asymptotic density
of those n divisible by such a square is about 1.56 x 108,

Moscow Journal of Combinatorics and Number T heory,
1 (2011), 52-66.
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Andrzej Schinzel
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Surely that cements it, and D(n) < 3 for all n, right?
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Surely that cements it, and D(n) < 3 for all n, right?
Well, no.

Kurlberg, Lagarias, P (2012): There are infinitely many
values of n with D(n) arbitrarily close to 1. In particular, there
are infinitely many values of n where all of the pairwise
products of a subset of 99% of the residues (mod n) all fall
into the remaining 1% of the residue classes.

Acta Arithmetica, in a special issue in honor of Andrzej
Schinzel's 75th birthday.
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Par Kurlberg

Jeffrey C. Lagarias
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Let's be more modest, just show me one n where D(n) >

N

It’s not so easy!

Here's a number. Take the first 10,000,000 primes. For those
primes below 1,000,000, take their 14th power, and for those
that are larger, take their square, and then multiply these

powers together to form N. Then D(N) > 0.5003. Further,
N ~ 101.61x10%

Can you find an example with fewer than 100,000,000 decimal
digits?
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What is behind this construction and proof?

It is actually very similar to the proof of the multiplication table
theorem.

Suppose n is a high power of the product of all of the primes
up to z, say the exponent is |[logz|. Then consider all residues
r (mod n) with

2 4
3 loglogz < Q(gcd(r,n)) < 3 log log z.

Then these residues r (mod n) form a product-free set, and in
fact most residues (mod n) satisfy this inequality.
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Actually the numbers % and % are not optimal, but 3 and 3 are.

Being especially careful with the estimates leads to the
following result:

Kurlberg, Lagarias, P (2013): There is a positive constant cy
such that for infinitely many n we have

D(n) >1— “1 :
1—S1o0g 2 1
(loglogn)-~2 (logloglogmn)2

Note that 1 — £log2 = 0.0579153... .
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This is optimal for our method of proof, but is this the optimal
result? It turns out that yes, apart from the constant cq, it is
optimal:

Kurlberg, Lagarias, P (2013): There is a positive constant c»
such that for all n we have

D(n) <1-— e :
1—<1og 2 1
(loglogn)~~2 (logloglogn)2

The idea for this upper bound: use linear programming!
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For a product-free set S in Z/nZ and for d | n, let oy be the
proportion of those s € S with gcd(s,n) = d among all residues
r (mod n) with gcd(r,n) = d.

Then each a4 is in [0, 1].

Further, if |S| > n/2, then oy = 0 and for all u,v with uv | n, we
have

oy + ay + aye < 2.

In some sense, |S|/n is closely modeled by >, cq/d.

So, the LP is to maximize >, aq/d given the above

constraints.
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Since we already know that D(n) can be fairly large, we need
not prove we have found the maximum of the LP, just some
upper bound for it. It is known that any feasible solution to the
dual LP gives an upper bound for the primary LP. Thus, we
write down the dual LP, find a fairly trivial feasible solution,
and then “shift mass” to make it better.

And, voila, our upper bound for all n's tightly matches our
constructed lower bound for champion n's.

36



Sated now with products, lets move on to sums ...

No, we're not going to start with addition tables. The
analogous problem is trivial, in the addition table for the
integers from 1 to N there are precisely 2N — 1 distinct sums.

But what about sum-free sets? Here we have a set of positive
integers that contains none of the pairwise sums of its
elements. How dense can such a set be?

This too is easy. The odd numbers form a sum-free set of
asymptotic density % And one cannot do better.
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Here's the proof. Say A is a sum-free set of positive integers
and a € A. Then the set a + A is disjoint from A. If A has

N = N(x) members in [1,z], then a+ A has N + O(1) numbers
here, so x > 2N 4+ O(1). Hence for all z, we have

N(x) < %x + O(1). We conclude that the upper density of a
sum-free set A of positive integers is at most %

Let us look at a somewhat more subtle problem. How dense
can a sum-free subset of Z/nZ be?

If n is even, then take the odd residues, and this is best
possible.

But what if n is odd?
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Diananda & Yap (1969), Green & Ruzsa (2005):

If n is solely divisible by primes that are 1 (mod 3), then the
maximal density of a sum-free set in Z/nZ is % — 3% If n is
divisible by some prime that is 2 (mod 3), then the maximal
density of a sum-free set in Z/nZ is 5 + 3ip, where p is the least
such prime. Otherwise, the maximal density of a sum-free set

. .1
in Z/nZ is 3.

This problem has been considered in general finite abelian
groups and also for non-abelian groups. A survey article by
recent Jeopardy contestant Kiran Kedlaya:

Product-free subsets of groups, then and now, Communicating
mathematics, 169-177, Contemp. Math., 479, Amer. Math.
Soc., Providence, RI, 20009.
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After hearing a shorter version of this talk a couple of years
ago, several graduate students asked me the following question:
What if you consider both sums and products?

Well, there is a famous and seminal problem here in which the
Erdbs multiplication-table theorem plays a role:

Among all sets A of N positive integers what is the minimum
value of A4+ A|+ |A- A|7?

If one takes A =1{1,2,...,N}, then |[A+ A =2N — 1 and
A~ Al = N2/(log N)¢to(1)  so for large N,

A+ Al +|A- Al > N?7¢
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If on the other hand we take A= {1,2,...,2¥~1} then
A- Al =2N -1 and |[A+ Al =iN? 4 IN, so that again

A+ A+ |A- Al > N?27€. (1)

Erd6s & Szemerédi asked in 1983: Is (1) true for any set A of
N positive integers?

There has been a parade of results getting better and better
lower bounds, with game players being the posers Erdds &
Szemerédi, then Nathanson, Chen, Elekes, Bourgain, Chang,
Konyagin, Green, Tao, Solymosi, ...
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Seeing a couple of Fields medalists in this list, with the problem
still not solved, is a bit daunting!

But what the grad students asked was about dense sets A that
are simultaneously sum-free and product-free.

For example, take the numbers that are 2 or 3 (mod 5). It is a
set of asymptotic density % and is both sum-free and
product-free. We cannot do better than % for the density
(considering only the sum-free property), but can we beat % for
both sum-free and product-free?
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Kurlberg, Lagarias, P (2012): Say A is sum-free and
product-free with upper density D(A).

1. If A C Z~qg with least element a, then D(A) < % (1 — 5—1a>

2. There is a constant k1 > 0, such that if A C Z/nZ, then

D(A) < = — 1l

-
(log log fn,)l_% 1992(|10glog log n)2

3. There is a constant ko and infinitely many n such that for
some A C Z/nZ,

1
D(A) > — — e "2 1°
(loglogn)1~2'°92(log log log n)2
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There remains a numerical problem: find an example of a
number n and a sum-free, product-free subset A of Z/nZ with
|A|

> 2.
For |A| = 3, we have n = 5. Back-of-the-envelope calculations
suggest that there is some n that beats n = 5 around

500,000

Y

a number so large that not only can't we write the number in
decimal notation, we can’t even write the number of its digits
in decimal notation.

But we haven't looked at this problem too closely and there
may be a much more modest example.
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T hank You!
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