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Analytic number theory abounds with logs, loglogs, logloglogs,

etc.

There are jokes about drowning analytic number theorists and

other jokes about how Hungarian chickens cluck.

Though the theoreticians assure us that these logs are in truth

there, can they really be detected numerically?

It is not so easy.

Here’s an example. Take the N ×N multiplication table. It has

N2 entries. It is a symmetric matrix, so most entries appear at

least twice. How many distinct entries does it have?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So, M(10) = 42.
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What would you conjecture about M(N) asymptotically?
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Here are some values of M(N)/N2:

N M(N)/N2

5 0.5600
10 0.4200
20 0.3800
40 0.3231
80 0.3030

160 0.2802
320 0.2671
640 0.2538

1000 0.2481
2000 0.2399
8000 0.2267

16000 0.2215
32000 0.2166
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(Calculations to 1000 by T. D. Noe as reported in the OEIS,

to 32000 by P. Kurlberg.)



Do we have M(N) of the shape N2−c1?

N M(N)/N2 c1
5 0.5600 .3603

10 0.4200 .3768
20 0.3800 .3230
40 0.3231 .3063
80 0.3030 .2725

160 0.2802 .2507
320 0.2671 .2289
640 0.2538 .2122

1000 0.2481 .2018
2000 0.2399 .1878
8000 0.2267 .1651

16000 0.2215 .1557
32000 0.2166 .1475
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How about M(N) of the shape N2/(logN)c2?

N M(N)/N2 c1 c2
5 0.5600 .3603 1.2184

10 0.4200 .3768 1.0401
20 0.3800 .3230 .8819
40 0.3231 .3063 .8655
80 0.3030 .2725 .8081

160 0.2802 .2507 .7832
320 0.2671 .2289 .7533
640 0.2538 .2122 .7349

1000 0.2481 .2018 .7213
2000 0.2399 .1878 .7038
8000 0.2267 .1651 .6759

16000 0.2215 .1557 .6640
32000 0.2166 .1475 .6539
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Or how about M(N) of the shape N2/ exp((logN)c3)?

N M(N)/N2 c1 c2 c3
5 0.5600 .3603 1.2184 1.1453

10 0.4200 .3768 1.0401 .1704
20 0.3800 .3230 .8819 .0300
40 0.3231 .3063 .8655 .0935
80 0.3030 .2725 .8081 .1200

160 0.2802 .2507 .7832 .1482
320 0.2671 .2289 .7533 .1585
640 0.2538 .2122 .7349 .1692

1000 0.2481 .2018 .7213 .1718
2000 0.2399 .1878 .7038 .1755
8000 0.2267 .1651 .6759 .1798

16000 0.2215 .1557 .6640 .1808
32000 0.2166 .1475 .6539 .1817
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

basic shape N2/(logN)c.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “c”. Let

c = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N2) = N2/(logN)c+o(1) as N →∞.
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In work of Tenenbaum progress was made (in French) in nailing

down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of

magnitude

N2

(logN)c(log logN)3/2
.

No matter the language, we still don’t know an asymptotic

estimate for M(N), despite this just being about the

multiplication table!
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So how can the fact that M(N) is small compared to N2 be

explained?

It all comes down to the function Ω(n), the total number of

prime factors of n, counted with multiplicity. For example,

Ω(8) = 3, Ω(9) = 2, Ω(10) = 2, Ω(11) = 1, Ω(12) = 3.
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In 1917, Hardy and Ramanujan proved that the normal order of

Ω(n) is log logn. That is, for each ε > 0, the set of integers n

with

|Ω(n)− log logn| < ε log logn

has asymptotic density 1.

So, this explains the multiplication table. Most products n1n2

have both n1 > N1/2 and n2 > N1/2, and most of these have

Ω(n1) and Ω(n2) fairly close to log logN (note that

log log(N1/2) differs from log logN by less than 1). So most of

the products formed have about 2 log logN prime factors,

which is an unusual value to have for a number below N2.
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G. H. Hardy S. Ramanujan
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So, log logN for integers below N is the center of the

distribution. To quantify M(N) one needs to know about

estimates for the tail, and that’s where the constant c arises.
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Product-free sets

How dense can a set of integers be if the set contains none of

its products?

For example, take the integers that are 2 (mod 3). The

product of any two of them is 1 (mod 3), so is not in the set.

And this set has asymptotic density 1
3.

The set of integers which are a power of 2 times a number that

is 3 (mod 4) is product-free, and it has density 1
2.

Can you do better?
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Consider periodic sets, such as the 2 (mod 3) example.

Let D(n) denote the maximal possible density of a product-free

set modulo n.

It is not hard to prove that lim infn→∞D(n) = 1
2.

Do we have D(n) < 1
2 for all n?
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P, Schinzel (2011): We have D(n) < 1
2 for all n except

possibly those n divisible by the square of a number with at

least 6 distinct prime factors. Further, the asymptotic density

of those n divisible by such a square is about 1.56× 10−8. And

the least such number is about 9× 108.

Moscow Journal of Combinatorics and Number Theory,

1 (2011), 52–66.

18



Andrzej Schinzel
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However:

Kurlberg, Lagarias, P (2011): There are infinitely many

values of n with D(n) arbitrarily close to 1. In particular, there

are infinitely many values of n where all of the pairwise

products of a subset of 99% of the residues (mod n) all fall

into the remaining 1% of the residue classes.

Acta Arithmetica, to appear in a special issue in honor of

Andrzej Schinzel’s 75th birthday.
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Pär Kurlberg Jeffrey C. Lagarias
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Let’s be more modest, just show me one n where D(n) ≥ 1
2.

It’s not so easy!

Here’s a number. Take the first 10,000,000 primes. For those

primes below 1,000,000, take their 14th powers, and for those

that are larger, take their squares, and then multiply these

powers together to form N . Then D(N) > 0.5003. Further,

N ≈ 101.61×108
.

Can you find an example with fewer than 100,000,000 decimal

digits?
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What is behind this construction and proof?

It is actually very similar to the proof of the Erdős

multiplication table theorem.

Suppose n is a high power of the product of all of the primes

up to x, say the exponent is blogxc. Then consider all residues

r (mod n) with

2

3
log logx < Ω(gcd(r, n)) <

4

3
log logx.

Then these residues r (mod n) form a product-free set, and in

fact most residues (mod n) satisfy this inequality.
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Actually the numbers 2
3 and 4

3 are not optimal, but e
4 and e

2 are.

Being especially careful with the estimates leads to the

following result:

Kurlberg, Lagarias, P (2011): There is a positive constant c1
such that for infinitely many n we have

D(n) > 1−
c1

(log logn)1−e
2 log 2(log log logn)

1
2

.

Note that 1− e
2 log 2 = 0.0579153 . . . .

24



This is optimal for our method of proof, but is this the optimal

result? It turns out that yes, apart from the constant c1, it is

optimal:

Kurlberg, Lagarias, P (2011): There is a positive constant c2
such that for all n we have

D(n) < 1−
c2

(log logn)1−e
2 log 2(log log logn)

1
2

.

The idea for this upper bound: use linear programming!
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Let me close with another computational problem.

Note that the set S of positive integers that are either 2 or 3

mod 5 is not only product-free, but it is also sum-free: no two

members have their sum in the set. Further, S has asymptotic

density 2
5.

Find a numerical example of a product-free, sum-free set with

asymptotic density strictly greater than 2
5. We have proved that

such sets exist, in fact with density arbitrarily close to 1
2, but

the least examples are likely to have so many decimal digits,

that we would not be able to write down the number of these

digits in decimal notation!
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Thank You!
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