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Let’s begin with products. Take the N ×N multiplication table.

It has N2 entries. It is a symmetric matrix, so most entries

appear at least twice. How many distinct entries does it have?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So, M(10) = 42.
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What would you conjecture about M(N) asymptotically?

Maybe

lim
N→∞

M(N)

N2
=

1

3
?

Maybe

lim
N→∞

M(N)

N2
= c > 0?

Maybe

lim
N→∞

M(N)

N2
= 0?
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Here are some values of M(N)/N2 (Brent & Kung 1981):

N M(N) M(N)/N2

1 1 1.0000
3 6 0.6667
7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117

127 4646 0.2881
255 17577 0.2703
511 67591 0.2588

1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 15202049 0.2266
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And some more values (Brent & Kung 1981, Brent 2012):

N M(N) M(N)/N2

214 − 1 59410556 0.2213
215 − 1 232483839 0.2165
216 − 1 911689011 0.2123
217 − 1 3581049039 0.2084
218 − 1 14081089287 0.2049
219 − 1 55439171530 0.2017
220 − 1 218457593222 0.1987
221 − 1 861617935050 0.1959
222 − 1 3400917861267 0.1933
223 − 1 13433148229638 0.1909
224 − 1 53092686926154 0.1886
225 − 1 209962593513291 0.1865
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And some statistically sampled values (Brent & P 2012):

N M(N)/N2 N M(N)/N2

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269

2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186

21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133

210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095
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It’s fairly “clear” that M(N) = o(N2) as N →∞.
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Do we have M(N) of the shape N2−c1?
Of the ahape N2/(logN)c2?
Of the ahape N2/(log logN)c3?

N M(N)/N2 c1

210 0.2473 2.02× 10−1

2102
0.1311 2.93× 10−2

2103
0.0798 3.65× 10−3

2104
0.0517 4.27× 10−4

2105
0.0348 4.84× 10−5

2106
0.0240 5.38× 10−6

2107
0.0171 5.87× 10−7

2108
0.0122 6.36× 10−8
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Do we have M(N) of the shape N2−c1?
Of the ahape N2/(logN)c2?
Of the ahape N2/(log logN)c3?

N M(N)/N2 c1 c2

210 0.2473 2.02× 10−1 .887

2102
0.1311 2.93× 10−2 .479

2103
0.0798 3.65× 10−3 .387

2104
0.0517 4.27× 10−4 .335

2105
0.0348 4.84× 10−5 .301

2106
0.0240 5.38× 10−6 .277

2107
0.0171 5.87× 10−7 .258

2108
0.0122 6.36× 10−8 .244
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Do we have M(N) of the shape N2−c1?
Of the ahape N2/(logN)c2?
Of the ahape N2/(log logN)c3?

N M(N)/N2 c1 c2 c3

210 0.2473 2.02× 10−1 .887 2.12

2102
0.1311 2.93× 10−2 .479 1.41

2103
0.0798 3.65× 10−3 .387 1.35

2104
0.0517 4.27× 10−4 .335 1.36

2105
0.0348 4.84× 10−5 .301 1.39

2106
0.0240 5.38× 10−6 .277 1.44

2107
0.0171 5.87× 10−7 .258 1.48

2108
0.0122 6.36× 10−8 .244 1.52
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

shape N2/(logN)c.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “c”. Let

c = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N2) = N2/(logN)c+o(1) as N →∞.
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In work of Tenenbaum progress was made (in French) in nailing

down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of

magnitude

N2

(logN)c(log logN)3/2
.

No matter the language, we still don’t know an asymptotic

estimate for M(N), despite this just being about the

multiplication table!
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So how can the fact that M(N) is small compared to N2 be

explained?

It all comes down to the function Ω(n), the total number of

prime factors of n, counted with multiplicity. For example,

Ω(8) = 3, Ω(9) = 2, Ω(10) = 2, Ω(11) = 1, Ω(12) = 3.

Some higher values: Ω(1024) = 10, Ω(1009) = 1, and

Ω(217 − 1) = 1, Ω(217) = 17.

But what is Ω(n) usually? That is, can Ω(n) be approximately

predicted from the size of n if we throw out thin sets like

primes and powers of 2?

Indeed it can.
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In 1917, Hardy and Ramanujan proved that the normal order of

Ω(n) is log logn. That is, for each ε > 0, the set of integers n

with ∣∣∣Ω(n)− log logn
∣∣∣ < ε log logn

has asymptotic density 1.

So, this explains the multiplication table. Most products n1n2

have both n1 > N1/2 and n2 > N1/2, and most of these have

Ω(n1) and Ω(n2) fairly close to log logN (note that

log log(N1/2) differs from log logN by less than 1). So most of

the products formed have about 2 log logN prime factors,

which is an unusual value to have for a number below N2.
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G. H. Hardy S. Ramanujan
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So, log logN for integers below N is the center of the

distribution. To quantify M(N) one needs to know about

estimates for the tail, and that’s where the constant c arises.

I should take a small diversion from our progress here and

mention one of the most beautfiful theorems in number theory,

the Erdős–Kac theorem. It says that the “standard deviation”

for Ω(n) for integers up to N is (log logN)1/2 and that the

distribution is Gaussian. Namely, for each real number u, the

set {
n : Ω(n) ≤ log logn+ u(log logn)1/2

}
has asymptotic density equal to

1√
2π

∫ u
−∞

e−t
2/2 dt.
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Einstein: “God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.

(Note: I made this up, it was a joke . . . )
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Prime numbers, the most mysterious figures in math, D. Wells
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Keeping with the theme of multiplication, what can be said
about sets of positive integers that are product-free? This
means that for any two members of the set, their product is
not in the set. It is as far as you can get from being closed
under multiplication.

It is easy to find such sets, for example the set of primes. But
how dense can such a set be?

Consider the set {
n : Ω(n) is odd

}
.

This set is product-free and has asymptotic density 1
2.

It’s not clear if this is the best one can do, but at least there’s
a fairly simple proof that any product-free set must have upper
asymptotic density strictly smaller than 1.
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To make further progress, and perhaps to make things a little

simpler, lets consider a periodic version of the problem.

Let D(n) denote the maximal density of a product-free set that

consists of residue classes modulo n.

For example, take the integers that are 2 (mod 3). The

product of any two of them is 1 (mod 3), so is not in the set.

And this set has asymptotic density 1
3.

We have D(3) = 1
3.

Can we do better with higher moduli?
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Well, the set of integers that are 2 or 3 (mod 5) is product-free

and has density 2
5. That is D(5) = 2

5.

For n = 7, we have D(7) = 3
7. Namely, consider the classes 3,

5, or 6 (mod 7).

It is not hard to prove that lim infn→∞D(n) = 1
2.

So, again we have met what seems to be some sort of

boundary: 1
2.

Do we have D(n) < 1
2 for all n?
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P, Schinzel (2011): We have D(n) < 1
2 for all n except

possibly those n divisible by the square of a number with at

least 6 distinct prime factors. Further, the asymptotic density

of those n divisible by such a square is about 1.56× 10−8.

Moscow Journal of Combinatorics and Number Theory,

1 (2011), 52–66.
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Andrzej Schinzel
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Surely that cements it, and D(n) < 1
2 for all n, right?
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Surely that cements it, and D(n) < 1
2 for all n, right?

Well, no.

Kurlberg, Lagarias, P (2012): There are infinitely many

values of n with D(n) arbitrarily close to 1. In particular, there

are infinitely many values of n where all of the pairwise

products of a subset of 99% of the residues (mod n) all fall

into the remaining 1% of the residue classes.

Acta Arithmetica, in a special issue in honor of Andrzej

Schinzel’s 75th birthday.
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Pär Kurlberg Jeffrey C. Lagarias
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Let’s be more modest, just show me one n where D(n) ≥ 1
2.

It’s not so easy!

Here’s a number. Take the first 10,000,000 primes. For those

primes below 1,000,000, take their 14th power, and for those

that are larger, take their square, and then multiply these

powers together to form N . Then D(N) > 0.5003. Further,

N ≈ 101.61×108
.

Can you find an example with fewer than 100,000,000 decimal

digits?
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What is behind this construction and proof?

It is actually very similar to the proof of the multiplication table

theorem.

Suppose n is a high power of the product of all of the primes

up to x, say the exponent is blogxc. Then consider all residues

r (mod n) with

2

3
log logx < Ω(gcd(r, n)) <

4

3
log logx.

Then these residues r (mod n) form a product-free set, and in

fact most residues (mod n) satisfy this inequality.
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Actually the numbers 2
3 and 4

3 are not optimal, but e
4 and e

2 are.

Being especially careful with the estimates leads to the

following result:

Kurlberg, Lagarias, P (2013): There is a positive constant c1
such that for infinitely many n we have

D(n) > 1−
c1

(log logn)1−e
2 log 2(log log logn)

1
2

.

Note that 1− e
2 log 2 = 0.0579153 . . . .

33



This is optimal for our method of proof, but is this the optimal

result? It turns out that yes, apart from the constant c1, it is

optimal:

Kurlberg, Lagarias, P (2013): There is a positive constant c2
such that for all n we have

D(n) < 1−
c2

(log logn)1−e
2 log 2(log log logn)

1
2

.

The idea for this upper bound: use linear programming!
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For a product-free set S in Z/nZ and for d | n, let αd be the

proportion of those s ∈ S with gcd(s, n) = d among all residues

r (mod n) with gcd(r, n) = d.

Then each αd is in [0,1].

Further, if |S| ≥ n/2, then α1 = 0 and for all u, v with uv | n, we

have

αu + αv + αuv ≤ 2.

In some sense, |S|/n is closely modeled by
∑
d|nαd/d.

So, the LP is to maximize
∑
d|nαd/d given the above

constraints.
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Since we already know that D(n) can be fairly large, we need

not prove we have found the maximum of the LP, just some

upper bound for it. It is known that any feasible solution to the

dual LP gives an upper bound for the primary LP. Thus, we

write down the dual LP, find a fairly trivial feasible solution,

and then “shift mass” to make it better.

And, voilà, our upper bound for all n’s tightly matches our

constructed lower bound for champion n’s.
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Sated now with products, lets move on to sums . . .

No, we’re not going to start with addition tables. The

analogous problem is trivial, in the addition table for the

integers from 1 to N there are precisely 2N − 1 distinct sums.

But what about sum-free sets? Here we have a set of positive

integers that contains none of the pairwise sums of its

elements. How dense can such a set be?

This too is easy. The odd numbers form a sum-free set of

asymptotic density 1
2. And one cannot do better.
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Here’s the proof. Say A is a sum-free set of positive integers

and a ∈ A. Then the set a+A is disjoint from A. If A has

N = N(x) members in [1, x], then a+A has N +O(1) numbers

here, so x ≥ 2N +O(1). Hence for all x, we have

N(x) ≤ 1
2x+O(1). We conclude that the upper density of a

sum-free set A of positive integers is at most 1
2.

Let us look at a somewhat more subtle problem. How dense

can a sum-free subset of Z/nZ be?

If n is even, then take the odd residues, and this is best

possible.

But what if n is odd?

38



Diananda & Yap (1969), Green & Ruzsa (2005):

If n is solely divisible by primes that are 1 (mod 3), then the

maximal density of a sum-free set in Z/nZ is 1
3 −

1
3n. If n is

divisible by some prime that is 2 (mod 3), then the maximal

density of a sum-free set in Z/nZ is 1
3 + 1

3p, where p is the least

such prime. Otherwise, the maximal density of a sum-free set

in Z/nZ is 1
3.

This problem has been considered in general finite abelian

groups and also for non-abelian groups. A survey article by

recent Jeopardy contestant Kiran Kedlaya:

Product-free subsets of groups, then and now, Communicating

mathematics, 169–177, Contemp. Math., 479, Amer. Math.

Soc., Providence, RI, 2009.
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After hearing a shorter version of this talk a couple of years

ago, several graduate students asked me the following question:

What if you consider both sums and products?

Well, there is a famous and seminal problem here in which the

Erdős multiplication-table theorem plays a role:

Among all sets A of N positive integers what is the minimum

value of |A+A|+ |A · A|?

If one takes A = {1,2, . . . , N}, then |A+A| = 2N − 1 and

|A · A| = N2/(logN)c+o(1), so for large N ,

|A+A|+ |A · A| > N2−ε.
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If on the other hand we take A = {1,2, . . . ,2N−1}, then

|A · A| = 2N − 1 and |A+A| = 1
2N

2 + 1
2N , so that again

|A+A|+ |A · A| > N2−ε. (1)

Erdős & Szemerédi asked in 1983: Is (1) true for any set A of

N positive integers?

There has been a parade of results getting better and better

lower bounds, with game players being the posers Erdős &

Szemerédi, then Nathanson, Chen, Elekes, Bourgain, Chang,

Konyagin, Green, Tao, Solymosi, . . .
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Seeing a couple of Fields medalists in this list, with the problem

still not solved, is a bit daunting!

But what the grad students asked was about dense sets A that

are simultaneously sum-free and product-free.

For example, take the numbers that are 2 or 3 (mod 5). It is a

set of asymptotic density 2
5 and is both sum-free and

product-free. We cannot do better than 1
2 for the density

(considering only the sum-free property), but can we beat 2
5 for

both sum-free and product-free?
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Kurlberg, Lagarias, P (2012): Say A is sum-free and
product-free with upper density D(A).

1. If A ⊂ Z>0 with least element a, then D(A) ≤ 1
2

(
1− 1

5a

)
.

2. There is a constant κ1 > 0, such that if A ⊂ Z/nZ, then

D(A) ≤
1

2
−

κ1

(log logn)1−e
2 log 2(log log logn)

1
2

.

3. There is a constant κ2 and infinitely many n such that for
some A ⊂ Z/nZ,

D(A) ≥
1

2
−

κ2

(log logn)1−e
2 log 2(log log logn)

1
2

.
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There remains a numerical problem: find an example of a

number n and a sum-free, product-free subset A of Z/nZ with
|A|
n > 2

5.

For |A|n = 2
5, we have n = 5. Back-of-the-envelope calculations

suggest that there is some n that beats n = 5 around

1010500,000
,

a number so large that not only can’t we write the number in

decimal notation, we can’t even write the number of its digits

in decimal notation.

But we haven’t looked at this problem too closely and there

may be a much more modest example.
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Thank You!

45


