Indian J. Math. 17 (1975), 107-120 (us repronts available)

There Are No Odd Super Perfect Numbers Less Than 7.10²⁴

J. L. Hunsucker and Carl Pomerance

§1. Introduction. D. Suryanarayana [7] called a natural number n super perfect if $\sigma(\sigma(n)) = 2n$ where σ is the sum of the divisors function. Other papers on this subject are Hunsucker and Pomerance [2], Kanold [3], Lord [4], Niederreiter [5], and Suryanarayana [8]. No one knows if any odd super perfect numbers exist, nor do we know a proof of their non-existence. Our result here, that the smallest such number must be $> 7 \cdot 10^{24}$, certainly puts them beyond reach of a casual search.

The main technique of our proof is to do case studies using prime factorizations of various $\sigma(p^a)$ where p is a prime. Most of the prime factorizations used in this paper are found in a computer print-out at the end of Tuckerman [9]. Several other factorizations we have established ourselves, namely $\sigma(3^{40})$, $\sigma(3^{42})$, $\sigma(3^{46})$, $\sigma(5^{28})$, $\sigma(7^{22})$, $\sigma(11^{18})$, $\sigma(13^{18})$, $\sigma(61^{12})$, $\sigma(71^{10})$, and $\sigma(1093^6)$. We used the CDC 6400 at the University of Georgia. We wish to thank Dr. D. E. Penney for his expert assistance in finding the factorizations.

We should say a word about our bound $7 \cdot 10^{24}$. If n is an odd super perfect number for which $(n, \sigma(n)) = 1$, then

- 3

it is easy to show that $n\sigma(n)$ is an odd perfect number. However, recently Hagis [1] showed that every odd perfect number is > 10^{50} . Hence if $(n,\sigma(n))=1$, and if n is an odd super perfect number, then $n\sigma(n)>10^{50}$. Now $\sigma(n)<\sigma(\sigma(n))=2n, \text{ so } n\sigma(n)<2n^2. \text{ Hence } n>(\frac{1}{2}\cdot 10^{50})^{\frac{12}{2}}>7\cdot 10^{24}.$ So we might assume throughout that $(n,\sigma(n))$ † 1. However, we found this condition only slightly useful, so we decided to make this paper independent of the Hagis result and not use the condition $(n,\sigma(n))$ † 1. The only remnant of our original approach is our unusual bound $7\cdot 10^{24}\approx (\frac{1}{2}\cdot 10^{50})^{\frac{12}{2}}$.

§2. Preliminaries. By a Fermat prime, we mean a prime of the form $2^{2^k} + 1$. By m|n, we mean m|n and $(m, \frac{n}{m}) = 1$. Note that $\sigma(p^a) = 1 + p + \dots + p^a = (p^{a+1}-1)/(p-1)$. Hence if a|b then $\sigma(p^{a-1})|\sigma(p^{b-1})$. Our first lemma comes from Pomerance [6, p. 269.].

Lemma 1. Let p be an arbitrary prime, q a Fermat prime, and b,x positive integers, where x \ddagger 3 (4). Then $q^b \| \sigma(p^X)$ if and only if either

- (i) p = 1(q) and $q^{b}||x+1;$ or
- (ii) x = 1(4), $q^{a}||p+1$ for some a > 0, and $q^{b-a}||x+1$.

Our second lemma is a catalogue of some known facts on odd super perfect numbers. Suryanarayana [7] and Kanold [3] noted that (i), (ii), and (iii) hold. Suryanarayana [8] and

Hunsucker and Pomerance [2] are responsible for (iv) and (v).

- Lemma 2. Let n be an odd super perfect number. then
 - (i) $\sigma(n)$ is odd;
 - (ii) n is a square;
 - (iii) $\sigma(n)$ is an Euler number, that is $\sigma(n) = p_1^a 1 \cdot p_2^{2a_2} \cdot \ldots \cdot p_k^{2a_k} \text{ where } p_1, \ldots, p_k$ are distinct odd primes and $p_1 \equiv a_1 \equiv 1(4)$ (we will call p_1 the <u>special prime</u>);
 - (iv) n is not a prime power;
 - (v) $\sigma(n)$ is not a prime power.

If x is a positive integer, we define $h(x) = \sigma(x)/x$. If x_1, \ldots, x_k are positive integers, we define $h(x_1, \ldots, x_k) = h(x_1) \cdot \ldots \cdot h(x_k)$. Hence if $y_i \mid x_i$ for $i = 1, \ldots, k$, then $h(y_1, \ldots, y_k) \leq h(x_1, \ldots, x_k)$ where equality holds if and only if $y_i = x_i$ for $i = 1, \ldots, k$. We clearly have that n is super perfect if and only if $h(n, \sigma(n)) = 2$. Note also that if $3 \mid (n, \sigma(n))$, then lemma 2 implies $9 \mid (n, \sigma(n))$. But h(9, 9) > 2. Hence we have

Lemma 3. If $a \mid n$, $b \mid \sigma(n)$, and h(a,b) > 2, then n is not super perfect. In particular n is not super perfect if $3 \mid (n,\sigma(n))$.

Lemma 4. For n an odd super perfect number either of the

following conditions implies $n > 7 \cdot 10^{24}$;

- (i) $\sigma(n) > 14 \cdot 10^{24}$
- (ii) n or $\sigma(n)$ has a square divisor > $7 \cdot 10^{24}$. Proof. If $\sigma(n) > 14 \cdot 10^{24}$ then $2n = \sigma(\sigma(n)) \ge 1 + \sigma(n) > 14 \cdot 10^{24}$. If $k^2 | \sigma(n)$ where $k^2 > 7 \cdot 10^{24}$ then lemma 2 implies $\sigma(n) \ge 5k^2 > 14 \cdot 10^{24}$.

We use the notation v(q,n) to denote the exponent of the prime q in the prime factorization of n. Hence v(q,n)=a if and only if $q^a\|n$.

§3. The smallest prime factor of ng(n) is not 7. In this section we will prove the title and more:

Theorem 1. If n is an odd super perfect number and either

- (A) 7 is the smallest prime in no(n); or
- (B) 3 | 1 + v(3,n) and 13 is the special prime; then $n > 7 \cdot 10^{24}$.

Note that if either (A) or (B) holds for n odd and super perfect, then we also have

(C) x is one of n and $\sigma(n)$, y is the other, 7|x, 3|y, 5|xy, the special prime is $\frac{1}{2}(3)$, and if $x = \sigma(n)$ then 3|x.

Indeed, note that if p = 2(3) and a = 1(4), then

 $3|p+1|\sigma(p^a)$, so (A) clearly implies (C). If (B) holds, then $7|\sigma(13)|2n$. Hence we take x=n so that (C) holds provided 3+y and 5+xy. But $h(3^2,5,7^2)>2$, so lemma 3 implies 5+xy. Lemma 3 also implies 3+y.

Hence to prove theorem 1 it will be sufficient to prove that for an odd super perfect number $\,n\,$ for which (C) holds we have $\,n\,>\,7\cdot10^{24}\,$.

We will denote the special prime power in $\sigma(n)$ by p^a . From condition (C) we have that $p \equiv 1(3)$. Also since $5 \nmid n\sigma(n)$ we have that $p \not\equiv 4(5)$ for otherwise $5 \mid \sigma(p^a) \mid 2n$. Also for $q \equiv 1(5)$ we have $5 \nmid 1 + v(q,z)$ where z = n or $\sigma(n)$. Since $3 \mid \sigma(7^2)$ and $3 \nmid y$, we have $3 \nmid 1 + v(7,x)$. Since $7^{30} > 14 \cdot 10^{24}$ we will prove theorem 1 by showing in propositions 1.1 through 1.4 that there is no allowable value for $\dot{v}(7,x) \leq 28$ for which $n < 7 \cdot 10^{24}$.

Proposition 1.1. $5 \nmid 1 + v(7,x)$.

Proof. Suppose 5|1+v(7,x). Then $2801=\sigma(7^4)|y$. Since $2801\equiv 2(3)\equiv 1(5)$, it is not special, and its exponent is not 4. Since $2801^{10}>14\cdot10^{24}$, it will be sufficient to show that $v(2801,y) \neq 2$, 6, or 8. Note that $\sigma(2801^6)=7\cdot71m$ where $(7\cdot71,m)=1$ and $m\equiv 3(4)$. Now $7^4\cdot71^2\cdot m>7\cdot10^{24}$ so for v(2801,y)=6, we have $7^4\cdot71^2m=\sigma(n)$. Lemma 2 implies then that $m\equiv 1(4)$, a contradiction. Hence, it will be sufficient to show that $3\frac{1}{7}v(2801,y)$.

Suppose 3|1+v(2801,y), so that $37.43.4933 = \sigma(2801^2)|x$. Since $43 = 1(3) \neq 1(4)$, we have $v(43,x) \geq 4$. Suppose 4933 is special. Then $2467 = \frac{1}{2}\sigma(4933)|y$. Since 2467 = 1(3), its exponent is not 2 for otherwise $3|x=\sigma(n)$. Now $v(2467,y) \neq 4$ since $(\sigma(2467^4), 7\cdot37\cdot43\cdot4933) = 1$ and $7^4\cdot37^2\cdot43^4\cdot4933\cdot\sigma(2467^4) > 14\cdot10^{24}$. Hence $v(2467,y) \geq 6$, so that $y \geq 2801^2\cdot2467^6 > 14\cdot10^{24}$, a contradiction. Hence 4933 is not special. But $v(4933,x) \neq 2$ since otherwise $3|\sigma(4933^2)|y$. Finally if $v(4933,x) \geq 4$, we have $x \geq 7^4\cdot37\cdot43^4\cdot4933^4 > 14\cdot10^{24}$.

Proposition 1.2. $v(7,x) \neq 6$ Proof. If v(7,x) = 6, then $29 \cdot 4733 = \sigma(7^6) | y$. Since 29 = 4733 = 2(3) neither prime is special. Since $29^2 \cdot 4733^6 > 7 \cdot 10^{24}$ it will suffice to show that $v(4733,x) \neq 2$ or 4. If v(4733,x) = 2, then $22406023 = \sigma(4733^2) | x$. Since $22406023 = 1(3) \neq 1(4)$, its exponent is ≥ 4 . But then $x \geq 7^6 \cdot 22406023^4 > 14 \cdot 10^{24}$. Hence $v(4733,x) \neq 2$. If v(4733,x) = 4, then $11 \cdot 41 \cdot 101 \cdot 11018941331 = \sigma(4733^4) | x$. But $\sigma(4733^4)^2 > 14 \cdot 10^{24}$, so that $v(4733,x) \neq 4$.

Proposition 1.3. $v(7,x) \neq 10$ or 12. Proof. If v(7,x)=10, then $1123 \cdot 293459 = \sigma(7^{10}) | y$. Since $1123^2 \cdot 293459^4 > 14 \cdot 10^{24}$, we may assume v(293459,y) = 2. Then $277 \cdot 310897033 = \sigma(293459^2) | x$. But both of these primes are = 1(3) so their exponents are = 2 or else = 3 y. Then $x \ge 7^{10} \cdot 277^4 \cdot 310897033 > 14 \cdot 10^{24}$.

If v(7,x) = 12, then $16148168401 = \sigma(7^{12}) | y$. If 16148168401 is special, then $103 \cdot m = \frac{1}{2}\sigma(16148168401) | x$ where $(7 \cdot 103, m) = 1$. Since $103 = 1(3) \neq 1(4)$, we have $v(103, x) \geq 4$. Then $x \geq 7^{12} \cdot 103^4 \cdot m > 7 \cdot 10^{24}$. But clearly v(16148168401, y) < 4, so we must have $3 \cdot m' = \sigma(16148168401^2) | x$ where $(3 \cdot 7, m') = 1$. Then $x \geq 3^2 \cdot 7^{12} \cdot m' > 14 \cdot 10^{24}$.

Proposition 1.4. $v(7,x) \neq 16$, 18, 22 or 28. Proof. If v(7,x) = 16, then $14009 \cdot 2767631689 = \sigma(7^{16}) | y$. Both of these primes are = 4(5) so neither is special. Then $y \geq \sigma(7^{16})^2 > 14 \cdot 10^{24}$.

If v(7,x) = 18, then $419.4534166740403 = <math>\sigma(7^{18})|y$, and again neither prime is special, so $y > 14.10^{24}$.

If v(7,x)=22, then $47\cdot3083\cdot31479823396757=\sigma(7^{22})|y$, and since these primes are all = 2(3), none is special.

Finally if v(7,x) 28, we note that $59\|\sigma(7^{28})\|y$. Then $y \ge 59 \cdot \sigma(7^{28}) > 14 \cdot 10^{24}$, since $v(59,y) \ge 2$.

§4. If $3|n\sigma(n)$ then $3+1+v(3,n\sigma(n))$. Suppose $3|n\sigma(n)$. Since $3+(n,\sigma(n))$, let x be the one of $n,\sigma(n)$ divisible by 3, and let y be the other. Then $v(3,n\sigma(n))=v(3,x)$.

Theorem 2. If n is an odd super perfect number and $3|1+v(3,n_{\sigma}(n))$, then $n>7\cdot 10^{24}$.

First we note that if 3|1+v(3,x), then $13=\sigma(3^2)|y$. Theorem 1 implies v(13,y) is even. If $v(13,y)\geq 22$, then lemma 2 implies $y\geq 5\cdot 13^{22}>14\cdot 10^{24}$, so we may assume v(13,y)<22. In propositions 2.1 to 2.5 we show there is no allowable value for v(13,y)<22 for which $n<7\cdot 10^{24}$.

Proposition 2.1. If 3|1+v(13,y), then 61 is not the special prime in x.

Proof. Assume 3|1+v(13,y) and 61 is the special prime in x. Then $x = \sigma(n)$, y = n and $31 = \frac{1}{2}\sigma(61)|n$. Suppose 3|1+v(31,n). Then $331|\sigma(31^2)|\sigma(n)$. Now $3|\sigma(331^2)$, so since $3|(n,\sigma(n))$, we have $3|1+v(331,\sigma(n))$. Since $5|\sigma(331^4)$ and $h(5^2\cdot 13^2\cdot 31^2,3^2)>2$, lemma 3 implies $v(331,\sigma(n)) \neq 4$. If $v(331,\sigma(n)) = 6$, then $2180921\cdot 604842197 = \sigma(331^6)|n$, and $n > \sigma(331^6)^2 > 7\cdot 10^{24}$. Note that $331^{10} > 14\cdot 10^{24}$. We conclude that 3|1+v(31,n).

Now $5 \cdot 11 \mid \sigma(31^4)$ and $h(13^2 \cdot 31^4, 3^2 \cdot 5^2 \cdot 11^2) > 2$, so $v(31,n) \nmid 4$. If v(31,n) = 6, then $917087137 = \sigma(31^6) \mid \sigma(n)$. Since $3 \mid \sigma(917087137^2)$, we have $\sigma(n) \geq 61 \cdot \sigma(31^6)^4 > 14 \cdot 10^{24}$, so $v(31,n) \nmid 6$. If v(31,n) = 10, then $23 \cdot 397 \cdot 617 \cdot 150332843 \mid \sigma(n)$, so $\sigma(n) \geq 61 \cdot \sigma(31^{10})^2 > 14 \cdot 10^{24}$. If v(31,n) = 12, then $42407 \cdot 2426789 \cdot 7908811 = \sigma(31^{12}) \mid \sigma(n)$, so $\sigma(n) \geq 61 \cdot \sigma(31^{12})^2 > 14 \cdot 10^{24}$. Finally, if $v(31,n) \geq 16$, then $n \geq 13^2 \cdot 31^{16} > 7 \cdot 10^{24}$.

Proposition 2.2. 3 + 1 + v(13,y).

Proof. Assume 3|1+v(13,y). Then $61|\sigma(13^2)|x$. We have

seen that v(61,x) is even. Since $3 | \sigma(61^2)$, we have 3 | 1 + v(61,x). Since $61^{16} > 14 \cdot 10^{24}$, we need only consider v(61,x) = 4, 6, 10 and 12.

Suppose v(61,x) = 4. Then $5 \cdot 131 \cdot 21491 | y$. Since 131 and $21491 \neq 1(4)$ they are not special. If v(21491,y) = 2, then $421 \cdot 1097113 = \sigma(21491^2) | x$. If 1097113 is special, then $548557 = \frac{1}{2}\sigma(1097113) | y$ and $n \ge 5^2 \cdot 13^2 \cdot 131^2 \cdot 21491^2 \cdot 548557^2 > 7 \cdot 10^{24}$. Now $3 | \sigma(1097113^2)$ and $3^2 \cdot 61^4 \cdot 1097113^4 > 14 \cdot 10^{24}$, so $v(21491,y) \neq 2$. Since $5 | \sigma(21491^4)$ and $h(5 \cdot 13, 3^2 \cdot 5^2) > 2$, we have $v(21491,y) \ge 6$. But $21491^6 > 14 \cdot 10^{24}$, so $v(61,x) \neq 4$.

If v(61,x) = 6, then $52379047267 = \sigma(61^6) | y$. Now $\sigma(52379047267^2) = 3 \cdot m$ where $(3 \cdot 61, m) = 1$. Then since $3^2 \cdot 61^6 \cdot m > 14 \cdot 10^{24}$, we have $v(52379047267, y) \ge 4$. But then $y > 14 \cdot 10^{24}$, so $v(61,x) \ne 6$.

If v(61,x) = 10, then $199 \cdot 859 \cdot 4242586390571 = \sigma(61^{10}) | y$, so that $y \ge \sigma(61^{10})^2 > 14 \cdot 10^{24}$. Finally, if v(61,x) = 12, then $187123 | |\sigma(61^{12})| | y$. But $187123 \cdot \sigma(61^{12}) > 14 \cdot 10^{24}$, so v(61,x) + 12.

Proposition 2.3. v(13,y) + 4.

proof. If v(13,y) = 4, then $30941 = \sigma(13^4) | x$. Now 30941 is not special since otherwise $3 | \sigma(30941) | y$. If v(30941,x) = 2 then $157 \cdot 433 \cdot 14083 = \sigma(30941^2) | y$. Since $13^4 \cdot 157^2 \cdot 433 \cdot 14083^4 > 14 \cdot 10^{24}$, we need only examine the case v(14083,y) = 2. In this case we have $3 \cdot 4591 \cdot 14401 = \sigma(14083^2) | x$. Now if

v(14401,x) = 1, then $19 \cdot 379 = \frac{1}{2}\sigma(14401) | y$ and $y \ge 13^4 \cdot 19^2 \cdot 157^2 \cdot 379^2 \cdot 433^2 \cdot 14083^2 > 14 \cdot 10^{24}$. But $v(14401,x) \ne 2$ since otherwise 3 | y. Then $v(14401,x) \ge 4$ so $x \ge 3^2 \cdot 4591^2 \cdot 14401^4 \cdot 30941^2 > 14 \cdot 10^{24}$. Hence $v(30941,x) \ne 2$.

If v(30941,x) = 4, then $5.11 | \sigma(30941^4) | y$. But $h(3^2, 5.11^2.13^4) > 2$. Hence $v(30941,x) \ge 6$, so $x \ge 3^2.30941^6 > 14.10^{24}$.

Proposition 2.4. $v(13,y) \neq 6$, 10, 12, 16 or 18. Proof. If v(13,y) = 6, then $5229043 = \sigma(13^6) \mid x$. But $5229043 \equiv 3(4) \equiv 1(3)$ so $v(5229043,x) \ge 4$. Then $x > 14 \cdot 10^{24}$.

If v(13,y) = 10, then $23 \cdot 419 \cdot 859 \cdot 18041 = \sigma(13^{10}) | x$. None of these primes are special since the first 3 are $\equiv 3(4)$ and $18041 \equiv 2(3)$. Also $v(859,x) \neq 2$ since otherwise $3|\sigma(859^2)|y$. Hence $x \ge 3^2 \cdot 23^2 \cdot 419^2 \cdot 859^4 \cdot 18041^2 > 14 \cdot 10^{24}$.

If v(13,y) = 12, then $53 \cdot 264031 \cdot 1803647 | x$. Hence $x \ge 3^2 \cdot 53 \cdot 264031^2 \cdot 1803647^2 > 14 \cdot 10^{24}$.

If v(13,y) = 16, then $103 \cdot 443 \cdot 15798461357509 = <math>\sigma(13^{16}) | x$. Since $15798461357509^2 > 14 \cdot 10^{24}$, we have $5 \cdot 13 \cdot 73 \cdot 21487 \cdot 77477$ $= \frac{1}{2}\sigma(15798461357509) | y$. Then $y \ge 5^2 \cdot 13^{16} \cdot 73^2 \cdot 21487^2 \cdot 77477^2 > 14 \cdot 10^{24}$.

Finally, if v(13,y) = 18, then $12865927 | |\sigma(13^{18}) | x$, so that $x \ge 3^2 \cdot 12865927 \cdot \sigma(13^{18}) > 14 \cdot 10^{24}$.

§5. If $3 \mid n\sigma(n)$ then $5 \nmid 1 + v(3, n\sigma(n))$ and $7 \nmid 1 + v(3, n\sigma(n))$. As in §4, we assume $3 \mid n\sigma(n)$ and we let x = n or $\sigma(n)$ depending on which is divisible by 3. Then $v(3, n\sigma(n)) = v(3, x)$. Also we let y be the other of $n, \sigma(n)$ so that $3 \nmid y$.

Theorem 3. If n is an odd super perfect number and either

 $5|1 + v(3, n_0(n)) \text{ or } 7|1 + v(3, n_0(n)), \text{ then } n > 7 \cdot 10^{24}.$

Note that $\sigma(3^4) = 11^2$ and $\sigma(3^6) = 1093$. Hence if 5|1+v(3,x) then 11|y and if 7|1+v(3,x), then 1093|y. Since $1093^9 > 11^{26} > 14 \cdot 10^{24}$, we need only consider v(11,y) < 26 and v(1093,y) < 9.

Proposition 3.1. If 5|1+v(3,x) then 1+v(11,y) is not divisible by 3 or 5.

Proof. If 3|1 + v(11,y), then $7 \cdot 19 = \sigma(11^2)|x$. Since 7 and 19 are non-special, we have $h(n,\sigma(n)) \ge h(3^4 \cdot 7^2 \cdot 19^2, 11^2) > 2$. So $3 \nmid 1 + v(11,y)$.

If 5|1+v(11,y), then $5|\sigma(11^4)|x$. But $v(5,x) \neq 1$ or else 3|y. Also $h(3^4 \cdot 5^2, 11^4) > 2$. Hence $5 \nmid 1+v(11,y)$.

We state the next proposition in a more general setting so that we may use it in proposition 7.1. Note that we do not assume that $3 \mid n_0(n)$.

Proposition 3.2. If n is an odd super perfect number, x = n or $\sigma(n)$, y is the other, $3 \nmid y$, and v(11,y) = 6, 10, 12, 16, 18 or 22, then $n > 7 \cdot 10^{24}$.

Proof. Suppose v(11,y) = 6. Then $43.45319 = \sigma(11^6) | x$. Since these primes are = 1(3) and = 3(4), we have that their exponents are = 4. But $\sigma(11^6)^4 > 14\cdot10^{24}$.

If v(11,y) = 10, then 15797.1806113 = $\sigma(11^{10}) | x$. Since these primes are =2(3), they are not special. Since $15797^4 \cdot 1806113^2 > 14 \cdot 10^{24}$, we may assume that $\sigma(11^{10})^2 | | x$.

But $11 + \sigma(\sigma(11^{10})^2)$ so $y \ge 11^{10}$. $\sigma(\sigma(11^{10})^2) > 14 \cdot 10^{24}$.

Now assume v(11,y) = 12 so that $1093 \cdot 3158528101 = \sigma(11^{12}) | x$. Now $1093^4 \cdot 315828101^2 > 14 \cdot 10^{24}$ so $1093^a \cdot 3158528101^b | | x$ where $\{a,b\} \subset \{1,2\}$ and $ab \neq 1$. Then $11 \nmid \sigma(1093^2 \cdot 3158528101^b)$ so $y \ge 11^{12} \cdot \frac{1}{2} \sigma(1093^2 \cdot 3158528101) > 14 \cdot 10^{24}$.

If v(11,y) = 16, then $\sigma(11^{16}) | x$. But $\sigma(11^{16})$ is prime. Now $\sigma(11^{16})^2 > 14 \cdot 10^{24}$ so $\sigma(11^{16}) | x$. Now $11 + \sigma(\sigma(11^{16}))$ so $y \ge 11^{16} \cdot \frac{1}{2} \sigma(\sigma(11^{16})) > 14 \cdot 10^{24}$.

If v(11,y) = 18, then $\sigma(11^{18}) | x$. But $\sigma(11^{18})$ is prime. As before $\sigma(11^{18}) | x$ and $11 + \sigma(\sigma 11^{18})$, so $y \ge 11^{18} \cdot \frac{1}{2} \sigma(\sigma(11^{18})) > 14 \cdot 10^{24}$.

Finally, suppose v(11,y) = 22. Then $829 \| \sigma(11^{22}) \| x$. Now $829 \cdot \sigma(11^{22}) > 14 \cdot 10^{24}$ so $829 \| x$. But $11 + \sigma(829)$, so $y \ge 11^{22} \cdot \frac{1}{2} \sigma(829) > 14 \cdot 10^{24}$.

Proposition 3.3. If 7|1 + v(3,x), then $2\dagger 1 + v(1093,y)$. Proof. Assume 7|1 + v(3,x) and 1093 is the special prime in y. Then $547 = \frac{1}{2}\sigma(1093)|x$. Now $3|\sigma(547^2)$ so $3\dagger 1 + v(547,x)$. Suppose v(547,x) = 4. Then $431 \cdot 208097431 = \sigma(547^4)|y$. Now $1093 \cdot \sigma(574^4)^2 > 7 \cdot 10^{24}$, so we have $\sigma(547^4)^2|y$. But $547\dagger \sigma(\sigma(547^4)^2)$ so $x \ge 547^4 \cdot \sigma(\sigma(547^4)^2) > 14 \cdot 10^{24}$. Hence v(547,x) = 4.

If v(547,x) = 6, then $7 \cdot 29 \cdot 132197305635599 = <math>\sigma(547^6) \mid y$. Then $y > \sigma(547^6)^2 > 14 \cdot 10^{24}$. Finally, if $v(547,x) \ge 10$, then $x \ge 3^6 \cdot 547^{10} > 14 \cdot 10^{24}$. Proposition 3.4. If 7|1+v(3,x) then $3\frac{1}{4}1+v(1093,y)$. Proof. Assume 7|1+v(3,x) and 3|1+v(1093,y). Then $398581|\sigma(1093^2)|x$. Since $3^6 \cdot 398581^4 > 14 \cdot 10^{24}$ and $3|\sigma(398581^2)$, we may assume 398581||x|. Then $17 \cdot 19 \cdot 617 = \frac{1}{2}\sigma(398581)||y|$. If v(617,y) = 2, then $97 \cdot 3931 = \sigma(617^2)||x|$. Since these primes are = 1(3), their exponents are > 4 and $|x| \geq 3^6 \cdot 97^4 \cdot 3931^4 \cdot 398581 > 14 \cdot 10^{24}$. If v(617,y) = 4, then $145159381141 = \sigma(617^4)||x|$, so that $|x| \geq 3^6 \cdot \sigma(617^4)^2 \cdot 398581 > 14 \cdot 10^{24}$. Hence $|v(617,y)| \geq 6$. But then $|v| \geq 17^2 \cdot 19^2 \cdot 617^6 \cdot 1093^2 > 14 \cdot 10^{24}$.

Proposition 3.5. If 7|1 + v(3,x), then $v(1093,y) \neq 4$ or 6. Proof. Assume 7|1 + v(3,x). If v(1093,y) = 4, then $11 \cdot 31 \cdot 4189129561 = \sigma(1093^4)|x$. Since $3^6 \cdot \sigma(1093^4)^2 > 14 \cdot 10^{24}$, we may assume 4189129561||x. Then $17^2 \cdot 7247629 = \frac{1}{2}\sigma(4189129561)|y$, so that $y \ge 17^2 \cdot 1093^4 \cdot 7247629^2 > 14 \cdot 10^{24}$.

If v(1093,y) = 6, then $7 \cdot 29 \cdot 14939 \cdot 562731116179 = <math>\sigma(1093^6) \mid x$. Then $x \ge 3^6 \cdot 7^2 \cdot 29 \cdot 14939^2 \cdot 562731116179^2 > 14 \cdot 10^{24}$.

§6. 3 no(n). We first prove

Theorem 4. If n is an odd super perfect number and $3 | \sigma(n)$, then $n > 7 \cdot 10^{24}$.

Proof. Suppose $3 \mid \sigma(n)$. Then theorems 2 and 3 imply that $v(3,\sigma(n)) \geq 10$. Lemma 2 allows us to write $n = p_1^{2b} 1 \cdot p_2^{2b} 2 \cdot \dots \cdot p_k^{2b} k$ where $p_1 < p_2 < \dots < p_k$ are primes. Now lemma 1 implies that $v(3,\sigma(p_1^{2b}i)) = v(3,2b_1+1)$ or 0 depending on whether $p_i \equiv 1$ or 2(3). Since $3^{10} \mid \sigma(n)$, we have $n \geq 7^2 \cdot 13^2 \cdot 19^2 \cdot 31^2 \cdot 37^2 \cdot 43^2 \cdot 61^2 \cdot 67^2 \cdot 73^2 \cdot 79^2 > 7 \cdot 10^{24}$.

Theorem 5. If n is an odd super perfect number and $3 | n\sigma(n)$, then $n > 7 \cdot 10^{24}$.

Assume $3 \mid n\sigma(n)$. From theorem 4 we may assume $3 \mid n$. Since $3^{50} \cdot 5^2 > 7 \cdot 10^{24}$, lemma 2 implies we may assume v(3,n) < 50. Also from lemma 2 and theorems 2 and 3 we may assume 1 + v(3,n) is not divisible by 2, 3, 5 or 7. In propositions 5.1 to 5.5 we shall show there is no allowable value for v(3,n) for which $n < 7 \cdot 10^{24}$.

Proposition 5.1. $v(3,n) \neq 10$.

proof. If v(3,n) = 10 then $23 \cdot 3851 = \sigma(3^{10}) | \sigma(n)$. Since $3851^8 > 14 \cdot 10^{24}$ and $3851 \equiv 3(4)$ all we need show is that $v(3851, \sigma(n)) \neq 2$, 4 or 6.

If $3851^2 \| \sigma(n)$ then $13 \cdot 1141081 = \sigma(3851^2) \| n$. Since these primes are $\equiv 1(3)$ and $3 + \sigma(n)$ we have $n \geq 3^{10} \cdot \sigma(3851^2)^4 > 7 \cdot 10^{24}$. If $3851^4 \| \sigma(n)$ then $5 \cdot 2289401 \cdot 19218301 = \sigma(3851^4) \| n$, so $n \geq 3^{10} \cdot \sigma(3851^4)^2 > 7 \cdot 10^{24}$. Finally if $3851^6 \| \sigma(n)$, then since $3 + \sigma(3851^6)$, we have $n \geq 3^{10} \cdot \sigma(3851^6) > 7 \cdot 10^{24}$.

Proposition 5.2. The special prime is $\equiv 17(36)$.

Proof. Suppose p is the special prime and $p^b \| \sigma(n)$. Then $p \ge 5$. Since $5^{53} > 14 \cdot 10^{24}$ and b = 1(4) we have $3^3 \nmid b + 1$. Then lemma 1 implies $v(3, \sigma(p^b)) \le 2 + v(3, p+1)$. Now $v(3,n) = v(3, \sigma(\sigma(n))) \ge 12$. Since $7^2 \cdot 13^2 \cdot 19^2 \cdot 31^2 \cdot 37^2 \cdot 43^2 \cdot 61^2 \cdot 67^2 \cdot 73^2 > 14 \cdot 10^{24}$, lemma 1 implies $v(3, \sigma(p^b)) \ge 4$. Then $v(3, p+1) \ge 2$, and since p = 1(4) we

have p = 17(36).

Proposition 5.3. $v(3,n) \neq 12$ or 16. Proof. If v(3,n) = 12, then $797161 = \sigma(3^{12}) \mid \sigma(n)$. Since $797161 \neq 17(36)$, it is not special. If $v(797161, \sigma(n)) = 2$,

then $3.61 \cdot 151 \cdot 22996651 = \sigma(797161^2) | n$. Then $n \ge 3^{12} \cdot \sigma(797161^2)^2 > 7 \cdot 10^{24}$. If $797161^4 | |\sigma(n)|$, then $n \ge 3^{12} \cdot \sigma(797161^4) > 7 \cdot 10^{24}$.

Finally, if $v(797161, \sigma(n)) \ge 6$, then $\sigma(n) > 14 \cdot 10^{24}$.

If v(3,n) = 16, then $1871 \cdot 34511 = \sigma(3^{16}) | \sigma(n)$. Neither prime is $\equiv 1(4)$, so neither is special. Since the special prime is at least 17, and $17 \cdot 1871^2 \cdot 34511^4 > 14 \cdot 10^{24}$, we have $34511^2 | \sigma(n)$. Then $13 \cdot 19 \cdot 4822039 = \sigma(34511^2) | n$. Hence $n \geq 3^{16} \cdot \sigma(34511^2)^2 > 7 \cdot 10^{24}$.

Proposition 5.4. If v(3,n) = 2a, if no prime factor of $\sigma(3^{2a})$ is $\equiv 17(36)$, and if $\sigma(3^{2a})$ is the product of k distinct primes, then $2a \leq \frac{1}{3}(51+k)$.

Proof. Let $\sigma(3^{2a}) = p_1 \cdot p_2 \cdot \cdots \cdot p_k$. Then proposition 5.2 and the assumption that no $p_1 \equiv 17(36)$ imply $p_1^{2b}1 \cdot p_2^{2b}2 \cdot \cdots \cdot p_k^{2b}k \| \sigma(n)$ for some b_1 , b_2 , ..., b_k . Lemma 1 implies $v(3,\sigma(p_1^{2b}i)) \leq v(3,2b_1+1)$ so that if m_i is that part of $\sigma(p_i^{2b}i)$ which is prime to 3, then $m_i \geq \sigma(p_i^{2b}i)/(2b_i+1) \geq \frac{1}{3}\sigma(p_i^2)$. Hence $n \geq 3^{2a} \cdot m_1 \cdot m_2 \cdot \ldots \cdot m_k > 3^{2a-k} \cdot p_1 \cdot p_2^2 \cdot \ldots \cdot p_k^2 = 3^{2a-k} \cdot \sigma(3^{2a})^2 > 3^{2a-k} \cdot \frac{4}{3} \cdot 3^{2a})^2 = 16 \cdot 3^{6a-k-2}$. Then the assumption $n < 7 \cdot 10^{24}$ implies $6a - k - 2 + \log_3 16 < \log_3 (7 \cdot 10^{24})$,

so that 6a - k < 52. Then $6a - k \le 51$, that is $2a \le \frac{1}{3}(51+k)$.

Proposition 5.5. $v(3,n) \neq 18$, 22, 28, 30, 36, 40, 42 or 46. Proof. We note the following prime factorizations:

$$\sigma(3^{18}) = 1597 \cdot 363889$$

$$\sigma(3^{22}) = 47 \cdot 1001523179$$

$$\sigma(3^{28}) = 59 \cdot 28537 \cdot 20381027$$

$$\sigma(3^{30}) = 683 \cdot 102673 \cdot 4404047$$

$$\sigma(3^{36}) = 13097927 \cdot 17189128703$$

$$\sigma(3^{40}) = 83 \cdot 2526913 \cdot 86950696619$$

$$\sigma(3^{42}) = 431 \cdot 380808546861411923$$

$$\sigma(3^{46}) = 1223 \cdot 21997 \cdot 5112661 \cdot 96656723$$

In each case proposition 5.4 is applicable, but also in each case $2a > \frac{1}{3}(51+k)$.

 $\S7.$ 5 $\frac{1}{2}$ n σ (n). In this section we prove

Theorem 6. If n is an odd super perfect number, and $5 \left| n\sigma(n) \right|$ the n > $7 \cdot 10^{24}$.

Suppose $5 \mid n\sigma(n)$. Let p be the special prime. In the previous section we showed that $3 \nmid n\sigma(n)$. Hence $p \equiv 1(3)$. Also if q is a prime factor of n or $\sigma(n)$ and if $q \equiv 1(3)$, then the exponent on q is not $\equiv 2(3)$. We shall let x = n or $\sigma(n)$ and y the other assuming $5 \mid x$. Note that we do not exclude $5 \mid y$.

Since $5^{36} > 14 \cdot 10^{24}$, we may assume v(5,x) < 36. Also we have v(5,x) even. In propositions 6.1 to 6.4 we show there is no allowable value for v(5,x) for which $n < 7 \cdot 10^{24}$.

Proposition 6.1. $3 \nmid 1 + v(5,x)$.

proof. If 3|1 + v(5,x), then $31 = \sigma(5^2)|y$. Since $31 \equiv 1(3)$, we have $3 \nmid 1 + v(31,y)$. If v(31,y) = 4, then $5 \cdot 11 \cdot 17351 = \sigma(31^4)|x$. Since $17351 \equiv 3(4)$ it is not special. If $17351^2||x$, then $13 \cdot 1063 \cdot 21787|y$. Since $1063 \equiv 21787 \equiv 1(3) \equiv 3(4)$, we have $y \ge 13 \cdot 31^4 \cdot 1063^4 \cdot 21787^4 > 14 \cdot 10^{24}$. If $17351^4||x$ then $5 \cdot 11 \cdot 1648012040336791 = \sigma(17351^4)|y$, so that $y \ge \sigma(17351^4)^2 > 14 \cdot 10^{24}$. If $17351^6|x$, then $x \ge 5^2 \cdot 17351^6 > 14 \cdot 10^{24}$. Hence $v(31,y) \nmid 4$.

If v(31,y) = 6, then $917087137 = \sigma(31^6) | x$. If 917087137 is special, then $11 \cdot 1451 \cdot 28729 = \frac{1}{2}\sigma(917087137) | y$, so that $y \ge 11^2 \cdot 31^6 \cdot 1451^2 \cdot 28729^2 > 14 \cdot 10^{24}$. Since $3 | \sigma(917087137^2)$ we have $917087137^4 | x$ which gives $x > 14 \cdot 10^{24}$. Hence $v(31,y) \ne 6$.

If v(31,y) = 10, then $23 \cdot 397 \cdot 617 \cdot 150332843 = \sigma(31^{10}) | x$ and $x \ge 5^2 \cdot 23^2 \cdot 397^2 \cdot 617 \cdot 150332843^2 > 14 \cdot 10^{24}$. If v(31,y) = 12, then $42407 \cdot 2426789 \cdot 7908811 = \sigma(31^{12}) | x$ and $x \ge 5^2 \cdot 42407^2$. $2426789 \cdot 7908811^2 > 14 \cdot 10^{24}$. If v(31,y) = 16, then $5 \nmid \sigma(31^{16}) | x$, so that $x \ge 5^2 \cdot \sigma(31^{16}) > 14 \cdot 10^{24}$. Hence $v(31,y) \ge 18$, so that $y \ge 31^{18} > 14 \cdot 10^{24}$.

Proposition 6.2. $5 \not= 1 + v(5,x)$.

Proof. If $5 \mid 1 + v(5,x)$ then $11 \cdot 71 = \sigma(5^4) \mid y$. Suppose

 $3 \mid 1 + v(71,y)$. Then $5113 = \sigma(71^2) \mid x$. If 5113 is special, then $2557 = \frac{1}{2}\sigma(5113) \mid y$. Now $3 \mid \sigma(2557^2)$ and if $2557^4 \mid y$, then $11 \cdot 12011 \cdot 323683781 = \sigma(2557^4) \mid x$. But then $x \ge 5^4 \cdot 5113 \cdot \sigma(2557^4)^2 > 14 \cdot 10^{24}$. Also $11^2 \cdot 71^2 \cdot 2557^6 > 14 \cdot 10^{24}$. Hence 5113 is not special. Since $5113 \equiv 1(3)$, we have $v(5113,x) \neq 2$. If $5113^4 \mid x$, then $11 \cdot 4751 \cdot 13080080081 = \sigma(5113^4) \mid y$. These primes are $\equiv 2(3)$, so they are non-special, and $y \ge \sigma(5113^4)^2 > 14 \cdot 10^{24}$. Hence $v(5113,x) \ge 6$. Then $x \ge 5^4 \cdot 5113^6 > 7 \cdot 10^{24}$ (cf. lemma 4). Hence $3 \nmid 1 + v(71,y)$.

If $71^4 \| y$ then $5 \cdot 11 \cdot 211 \cdot 2221 = \sigma(71^4) \| x$. Now 211 = 1(3) = 3(4) so 211 is non-special and $3 \nmid 1 + v(211, x)$. If $211^4 \| x$, then $5 \cdot 1361 \cdot 292661 = \sigma(211^4) \| y$. These primes are all = 2(3) so none is special. Then $y \ge 11^2 \cdot 71^4 \cdot \sigma(211^4)^2 > 14 \cdot 10^{24}$. If $211^6 \| x$ then $7 \| \sigma(211^6) \| y$ so that $y \ge 11^2 \cdot 71^4 \cdot 7^3 \cdot \sigma(211^6) > 14 \cdot 10^{24}$, since $v(7, y) \nmid 2$. Hence $211^{10} \| x$, so that $x \ge 5^4 \cdot 11^2 \cdot 211^{10} \cdot 2221 > 14 \cdot 10^{24}$.

If $71^6 \| y$, then $7.883.21020917 = \sigma(71^6) \| x$. But 7 = 883 = 3(4) = 1(3) so that $x \ge 5^4 \cdot 7^4 \cdot 883^4 \cdot 21020917 > 14 \cdot 10^{24}$. If $71^{10} \| y$, then $23q = \sigma(71^{10}) \| x$ and q is a prime = 3(4). Then $x \ge 5^4 \cdot 23^2 \cdot q^2 > 14 \cdot 10^{24}$. If $71^{12} \| y$, then since $11^4 \cdot 71^{12} > 7 \cdot 10^{24}$, we have $11^2 \| y$. But $5 \nmid \sigma(11^2 \cdot 71^{12})$, so that $x \ge 5^4$. $\sigma(11^2 \cdot 71^{12}) > 14 \cdot 10^{24}$. Hence $71^{16} | y$. But then $y \ge 11^2 \cdot 71^{16} > 14 \cdot 10^{24}$.

Proposition 6.3. x = n and the special prime is = 49(100).

Proof. Propositions 6.1 and 6.2 imply that $v(5,x) \ge 6$, so $5^6 | \sigma(y)$. Let y' be the product of the non-special primes in y with correct exponents, so that if y = n, then y' = y. If $5^5 | \sigma(y')$, then lemma 1 implies $y' \ge 11^4 \cdot 31^4 \cdot 41^4 \cdot 61^4 \cdot 71^4 > 14 \cdot 10^{24}$. Hence $y = \sigma(n)$, x = n and if p^b is the special prime power in y, then $5^2 | \sigma(p^b)$. Lemma 1 and the above estimate show that $p \ne 1(5)$, so that p = 4(5). Suppose $p \ne 49(100)$. Then 5 | p+1. Now $p \ge 109$, and since $109^{49} > 14 \cdot 10^{24}$, we have $v(5,b+1) \le 1$. But $5^2 | \sigma(p^b)$, so v(5,b+1) = 1 and $5^2 | \sigma(p^b)$. Then $y \ge 109^9 \cdot 11^4 \cdot 31^4 \cdot 41^4 \cdot 61^4 > 14 \cdot 10^{24}$. Hence p = 49(100).

Proposition 6.4. $v(5,n) \neq 6$, 10, 12, 16, 18, 22, 28, or 30. Proof. If v(5,n) = 6, then $19531 = \sigma(5^6) | \sigma(n)$. Since $19531 \equiv 1(3) \equiv 3(4)$, we have $v(19531,\sigma(n)) \ge 4$ and even. If $v(19531,\sigma(n)) = 4$, then $5 \cdot 191 \cdot 4760281 \cdot 32009891 = \sigma(19531^4) | n$. Then $n \ge 5^4 \cdot \sigma(19531^4)^2 > 7 \cdot 10^{24}$. Hence $19531^6 | \sigma(n)$, so $\sigma(n) \ge 14 \cdot 10^{24}$. Thus $v(5,n) \neq 6$.

The primes listed in the following factorizations are all \equiv 1(3) and \ddagger 49(100): $\sigma(5^{10}) = 12207031$, $\sigma(5^{12}) = 305175781$, $\sigma(5^{16}) = 409 \cdot 466344409$. Hence if v(5,n) = 10, 12 or 16 then $\sigma(5^{v(5,n)})^4 | \sigma(n)$, so that $\sigma(n) \geq \sigma(5^{10})^4 > 14 \cdot 10^{24}$.

The primes involved in the following factorizations on all \ddagger 49(100): $\sigma(5^{18})$ = 191.6271.3981071, $\sigma(5^{22})$ = 8971.332207361361, $\sigma(5^{28})$ = 59.35671.22125996444329. Hence

if v(5,n) = 18, 22, or 28, then $\sigma(5^{v(5,n)})^2 | \sigma(n)$, so that $\sigma(n) \ge \sigma(5^{18})^2 > 14 \cdot 10^{24}$.

Finally if v(5,n) = 30 then $1861 \| \sigma(5^{30}) \| \sigma(n)$. Now 1861 = 1(3) + 49(100) so $\sigma(n) \ge 1861^3 \cdot \sigma(5^{30}) > 14 \cdot 10^{24}$.

§8. Conclusion. In this section we conclude our proof that there are no odd super perfect numbers $<7\cdot10^{24}$. If n is an odd super perfect number, then $2=h(n)h(\sigma(n))$. Then either $h(n)>\sqrt{2}$ or $h(\sigma(n))>\sqrt{2}$. Let x be the one of $n,\sigma(n)$ for which $h(x)>\sqrt{2}$, and let y be the other.

Theorem 7. If n is an odd super perfect number, x = n or $\sigma(n)$ where $h(x) > \sqrt{2}$, and either $\ln |x|$ or 13|x|, then $n > 7 \cdot 10^{24}$.

Before we prove theorem 7 in propositions 7.1 and 7.2, we will show how it is sufficient to prove our main result.
Suppose n is an odd super perfect number and n < 7.10 . Then $(2\cdot3\cdot5\cdot7\cdot11\cdot13,x)=1$ using theorems 1, 4, 5, 6 and 7. Now $17^2\cdot19^2\cdot23^2\cdot29^2\cdot31^2\cdot37^2\cdot41^2\cdot43^2\cdot47^2\cdot53^2\cdot59>14\cdot10^{24}$, so x has no more than 10 distinct prime factors. If $x=\pi p_i^{a_i}$ then $h(x)=\pi h(p_i^{a_i})=\pi(p_i^{a_i+1}-1)/(p_i-1)p_i^{a_i}<\pi p_i/(p_i-1)\leq \frac{17}{16}\cdot\frac{19}{18}\cdot\frac{23}{22}\cdot\frac{29\cdot31\cdot37\cdot41\cdot43\cdot47\cdot53}{30\cdot36\cdot40\cdot42\cdot47\cdot52}</p>
7. This contradiction establishes our main result.$

Proposition 7.1. 11+x.

proof. Suppose 11|x. Since $7|\sigma(11^2)$ and $5|\sigma(11^4)$, we have $3, 5 \nmid 1 + v(11,x)$. Then proposition 3.2 implies $v(11,x) \ge 28$, so $x > 14 \cdot 10^{24}$.

Proposition 7.2. 13-x.

Proof. Suppose $13 \mid x$. Since $7 \mid \sigma(13)$ and $3 \mid \sigma(13^2)$ we have 2, $3 \nmid 1 + v(13, x)$. Suppose v(13, x) = 4. Then $30941 = \sigma(13^4) \mid y$. Now $3 \mid \sigma(30941)$ so 30941 is not special. If $30941^2 \mid y$, then $157 \cdot 433 \cdot 14083 = \sigma(30941^2) \mid x$. Now these primes are all $\equiv 1(3)$ and $14083 \not\equiv 1(4)$ so $x \geq 13^4 \cdot 157^4 \cdot 433 \cdot 14083^4 > 14 \cdot 10^{24}$. Since $5 \mid \sigma(30941^4)$ we have $v(30941, y) \geq 6$. Then $y > 14 \cdot 10^{24}$.

Hence $v(13,x) \ge 6$. Now if 19|x, then $v(19,x) \ge 4$ since $3|\sigma(19^2)$. But $13^6 \cdot 17^2 \cdot 19^4 \cdot 23^2 \cdot 29^2 \cdot 31^2 \cdot 37^2 \cdot 41 > 13^6 \cdot 17^2 \cdot 23^2 \cdot 29^2 \cdot 31^2 \cdot 37^2 \cdot 41^2 \cdot 43 > 14 \cdot 10^{24}$, so x is divisible by at most 7 distinct primes. Then $h(x) < \frac{13}{12} \cdot \frac{17}{16} \cdot \frac{19}{18} \cdot \frac{23}{22} \cdot \frac{29}{28} \cdot \frac{31}{30} \cdot \frac{37}{36} < \sqrt{2}$, a contradiction.

References

- 1. P. Hagis, Jr., A lower bound for the set of odd perfect numbers, Math. Comp. 27 (1973), 951-953.
- 2. J. L. Hunsucker and C. Pomerance, Some new results on odd perfect numbers, submitted for publication.
- 3. H. J. Kanold, Uber "Super perfect numbers", Elem. Math. 24 (1969), 61-62.
- 4. G. Lord, Even perfect and super perfect numbers, Elem. Math. (to appear).
- 5. H. G. Niederreiter, Solution of Aufgabe 601, Elem. Math. 25 (1970).67.
- 6. C. Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1974), 265-300.
- 7. D. Suryanarayana, Super perfect numbers, Elem. Math. 24 (1969), 16-17.
- 8. D. Suryanarayana, There is no odd super perfect number of the form $p^{2\alpha}$, Elem. Math. 28 (1973), 148-150.
- 9. B. Tuckerman, Odd perfect numbers; a search procedure and a new lower bound of 10³⁶, IBM Research Paper RC-1925, October 29, 1967.