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There Are No Odd Super Perfect Numbers Less Than 7-1024

J. .. Hunsucker and Carl Pomerance

§1. Introduction. D, Suryanarayana [7] called a natural
number n super perfect if g(g(n)) = 2n where g is
the sum of the divisors function. Other papers on this
subject are Hunsucker and Pomerance [2], Kanold [3], Lord [4],
Niederireiter [5], and Suryanarayana [8], No one knows
if any odd super perfect numbers exist, nor do we know a
proof of their non—existénce. Our result here, that the
smallest such number must be > 7-1024, certainly puts them
beyond reach of a casual search.

The main technique of our proof is tb‘do case studies
uging prime factorizations of various g(pa) where p |is
a prime. Most of the prime faétorizations used in this paper
are found in a computer print-out at the end of Tuckermén [9].
Several other factorizations we have established ourselves,
namely ¢(3%9), 03%%), 53%), 052, 0(v?%), sa1'®y,
8 2

), 06119, ¢71'%), and ¢1093%). Wwe used the cpc 6400

-at the University of Georgia. We wish to thank Dr., D. E,.

\0(131

Penney for his expert assistance in finding the factorizations.

We should say a word about our bound 7-102%. 1r 1 is

an odd super perfect number for which (n,g(n)) = 1, then

§
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it is easy to show that ng({n) is an odd perfect number,
However, recently Hagis [1] showed that every odd perfect

numper . is > 1050. Hence if (n,g(n)) =1, and if n is

ah odd super perfect number, then ng(n) > 1050. Now" 1

o(n) < glg(n)) = 2n, so ng(n)< 2n2, Hence n > (%' 1050)?;7-1024.
So we might assume throughout that (n,e(n)) § 1. However,
we found this condition only slightly useful, so we decided
to make this paper independent of the Hagis result and not
use the condition (n,g(n)) ¢ 1. The only remnant of our,

original approach 1s our unusual bound ’?'1024 A (%~ 1050)2.

§2, Preliminaries, By a Fermat prime, we mean a prime of

K :
the form 2° + 1. By min, we mean . m|n and (m,%) =1,
Note that g(p®) =1 4+ p + ... + p> = (pa+1—1)/(p—1). Hence

if al|b then o(pahl)lc(pb—l). Our first lemma comes from

Pomerance [6, p. 269, ].

Lemma 1, Let p be an arbitrary prime, g a Fermat prime, .
and b,x positive integers, where x % 3 (4). Then
qbngch) if and only if either

(i) »p

(ii1)" x

m

1(q) and qux+l; or

i

1(4), anp+l for some a > O, and qb—anx+l.

Our second lemma is a catalogue of some known facts on
odd super perfect numbers, Suryanarayana [7] and Kanold [3]

noted that (i), (ii), and (iii) hold. Suryanarayana [8] and



Hunsucker and Pomerance [2] are responsible for (iv) and

(v).
Lemma 2., Let n Dbe an odd super perfect number, then
(i) ¢(n) 1is odd;
(ii) n is a square;
(iii) e¢(n) is an Euler number, that is
a(n) = pil'pgaz «piak where p,,...,p.
are distinct odd primes and p, =2 & 1(4) (we
will call p, the special prime);
(iv) n 1is not a prime power;
(v) g(n). is not a prime power,
If x 1is a positive integer, we define h(x) = ¢(x)/x.
It Kypooos Xy are pﬁsitive integers, we define
h(xl;...,xk) = h(xy). ... -h(x )., Hence if vy lx; for
i= 1,...;k; then h(yl,...,yk) < h(xl,...,xk) where equal -~
ity holds if for i =1,...,k. We

clearly have that =n
= 2,

9| (n,a(n)).

h(n;c(n))

implies But

and only if y, = X

i

h(9,9) > 2.

is super perfect if and only if

Note also that if 3|(n,o(n)), then lemma 2

Hence we have

Lemma 3. If aln, b|lo(n), and h(a,b) > 2, then n is not

super perfect, In particular

3{(n,a(n)).

L.emma 4, Fbr

n

is not super perfect if

n an odd super perfect number either of the
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following coanditions implies n > 7°1024:
(i) oln) > 14-1029
(ii) n or g¢(n) has a square divisor > ?°1024;
Proof, If g(u) > 14“1024 then 2n = g(g(n)) = 1+g(n)>14°10
1f kzlc(n) where k2 > 71021 then lemms 2 implies
a(n) = 5k% > 14.10%4,

We use the notation vig,n) to denote the expoanent of the
prime ¢ 1in the prime factorization of n. Hence v(g,n) = a

if and only if q°|n.

§3. The smallest prime factor of ng(n) is not 7. In

this section we will prove the title and more:
Theorem 1., If n 1is an odd super perfect number and either

(A) 7 is the smallest prime in ng(n); or

(B) 3|1 + v(3,n) and 13 is the special prime;
then n > 7°1024°
Note that if either (A) or (B) holds for n odd and

super perfect, then we also have

(C}) x is one of u and g¢g(n), y is the other,
7|z , 34y , 5my, the special prime is $ 2(3),

and if x = g(n) then 3+x.

Indeed, note that if p = 2(3) anwd a = 1(4), then



5
3|p+l]0(pa), so (A) clearly implies (C). I (B) holds, then
7|c(13)]2n; Hence we take x = n so that (C) holds pro-
vided 34y and OGixy. But h(32,5,72) > 2, so lemma 3
implies b54xy. Lemma 3 also implies 3{y.

Hence to prove theorem 1 it will be sufficient to prove
that for an odd super perfect number n for which (C) holds
we have n > ?J1024,

We will denote the special prime péﬁer in ¢(n) by
pa. From condition (C) we have that p = 1(3), Also since
54nog(n) we have that pt 4(5) for otherwise 5{c(pa)|2n.
Also for q =1(5) we have 5+1 + vi{g,2) where z =1n or
gln). Since"3{0(72) and 3+y, we have 3+1 + v({7,x). Since
730 > 14-1024 we will prove theorem 1 by showing in propositions
1.1 through 1.4 that there is no allowable value for
v(7,x) ¢ 28 for which n < 7-1024.
Proposition 1.1. 541 + v(7,x).
Proof. Suppose 5|1 + v(7,x). Then 2801 = 0(74)|y. Since
2801 = 2(3) = 1(5), it is not special;and its exponent is
not 4, Since 280110 > 14‘1024, it will be sufficient to show

that v(2801,y) + 2, 6, or 8, Note that 6(28016) = 9*71lm
where (7°71,m) =1 and m = 3(4). Now 74-712-m > 7-1024

so for v(2801,y) = 6, we have 74

'712m = g(n), Lemma 2

1(4), a contradiction. Hence, it will

il

implies then that m

be sufficient to show that 34{v(280l,y).
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Suppose 3|1 + v{2801,y), so that 37.43.4933 = 0(28012)[x,
Since 43 = 1(3) % 1(4), we have v(43,x) = 4. Suppose
4933 is special. Then 2467 = $0(4933)|y. Since 2467 = 1(3),
1ts exponent iz not 2 for otherwise 3|x = ¢(n)., Now |
v(2467,y) + 4 since (¢(24677), 7-37.43°4933) = 1 and

74372, 43% 4033 0(2467%) > 14.10%%, mence v(2467,y) = 6,

so that y = 28012°246?6 > léslozqy a contradiction, Hence
4933 is not special. But v{(4933,x) ¥ 2 since otherwise
3[@(49332)|y, Finally if v(4933,x) = 4, we have Xx =
7937434, 4033 > 14710%4,

Proposition 1.2, v(7,%) {6 .

Proof,. I v{(7,x) = 6, then 29-4738 = g(?s)]y, Since

2, 4733857 .1024

29 = 4733 = 2(3) nelther prime is special. Since 29
it will suffice to show that v(4733,x) § 2 or 4, If v(4733,x)=2,
then 22406023 = ¢(4753%) [x. Since 22406023 = 1(3) % 1(4),

its exponent is = 4., But then x =2 765224060234 > 14°1024,

Hence v(4733,x) 4 2, If v{4733,x) = 4, then
11+41+101+11018941331 = ¢(4733%) |x. But gCar33hH? > 14,1029,

so that v(4733,x) $ 4.

Proposition 1,3, v{7,x) § 10 or 12,

proof. If v(7,%)=10, then 1123.293459 = g(710)|y. Since
11232°2934594 > 14‘1024, we may assume v{(293459,y) = 2,
Theit 277.310897033 = 5(2934592)13,' But both of these primes

are = 1(3) so their exponents are $ 2 or else S‘y. Then



x 2 710.9779. 310807038 > 14.10%%,

£ v(7,x) =12, then 16148168401 = o(7 %) |y. If
16148168401 is special, then 103°'m = %0(16148168401)|x where
1(3) 4 1¢4), we have v(103,x) = 4,

fi

(7°103,m) = 1, Since 103

1

Then x = 7 2«1034°m > '7--1024°

But clearly v(16148168401,y) < 4,

; 2
so we must have 3.m'=g (161481684017) |x where (3:7,m') = 1,

32b512. . 24

Then = = 7 m? > 141077,

Proposition k.4, v(7,x) 4 16, 18, 22 or 28,
Proof. If v(7,x) = 16, then 14009°2767631689 - ¢(710) |y,
Both of thése primes are = 4(5) so neither is special, Then
y = 07262 5 14.10%4,

12 v(7,%) = 18, then 410-4534166740403 - ¢(7'%) |y,
and again neither prime is special, so y > 14-1024.

1 v(7,x) = 22, then 47+ 308331479823396757 = ¢(722) |y,
and since these primes are all = 2(3), none is special,
_ Finaily it v{7,x) 28, we note that 59“0{728)!y, Then
v = 59:°6(7%%) > 14.10%%, "since v(59,y) = 2.
§4. 1f SIﬁc(n) then 331 + v{3,nelr)). Suppose 3|ng(n).
Since 34{n,oln)), let = be the one of n,g(n) divisible

by 3 and let y be the other. Then v(3,neln)) = v(3,x).

Theorem 2. If n is an odd super perfect number and

3]1 + v({3,ng{n)), then a > 7°1024,
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First we note that if 3[1 + v(3,x), then 13 = 0(32)|y.
Theorem 1 implies v{(13,y) is even. If v(13,y) =z 22,
then lemma 2 implies y = 5~1322 > 14‘1024, So we may assume
v(13,y) < 22, In propositions 2.1 to 2.5 we show there

is no allowable value for v(13,y) < 22 for which n < 7-1024.

Proposition 2,1, If 3|1 + v(13,y), then 61 is not the
special prime in x.

proof. Assuie 3|1 + v{(13,y) and 61 is the special prime
in x. Thea x = g{(n), y = n and 31 = %U(Sl)ln, Suppose
3[1 + v(31,n). Then 331{0(31%)|cln). Now B8|o(331%),

so since 34(n,c(n)), we have 341 + v{331,0(n)). Since
5]0(331%)  and ' n(5%.13%.31%,3%) > 2, lemma 3 implies
v(331,0(n)) + 4. If v(331,0(n)) = 6, then

6(331% [n, and n > 033192 5> 7-10%9,

4

2180921 604842197

Note that 33110 > 14.10%

We conclude that 31 + v(31,n).

Now 5-11]0(31h) and w(13%.317,3%.5%.11%) > 2, so

v(31,n) + 4. If v(31,n) = 6, then 917087137 = ¢(31%) |o(n).

Since 3|0(9170871377), we have o(n) = 61-6(31%)% > 14:10%4,

so v(3l,n) +6. 1f v(31,n) = 10, then 23-397'617°150332843|c¢(n),

2
2. 14-10%%, 1f v(31,n) =12, then

12)?

so g(n) = 61-0(3119%)

4

42407 -2426789:7908811 = ¢(311%) [g(n), so on) 2 61+¢(311%)%14.10%9,

16 24

¥Finally, if v(31l,n) = 16, then n = 132°31 > 71077,

Proposition 2.2. 3841 + v(13,y).

proof. Assume 3|1 + v(13,y). Then 61]c(13%) |x. We have



2
seen that v(6l,x) is even., Since 3|o(617), we have
. 16 . 24 .
3+1 + v(6l,x). Since 61 > 14-107 7, we need only consider
v(6l,x) = 4, 6, 10 and 12,
Suppose v(61,x) = 4. Then 5-131:21491]y. Since 131
and 21491 § 1(4) they are not special. If v(21491,y) = 2;

then 421°1097113 = ¢{21491%) |x. If 1097113 is special, then

2 .2
548557 = 30(1097113) |y and a = 52.132.131%.21401%. 5485572
| o ,
7.1024, Now 3|U(10971132) and 3‘"‘«614°10971134 > 14'1024,

so v(21491,y) 4 2. Since 5|0(21491%) ana n(51%,32.5%)>2,

we have v(21491,y) = 6. But 21491% > 14.10%, s0 v(61,x) + 4.

£ v(61,x) = 6, then 52379047267 = o(61%)|y. Now

a(52379047267%==5%n: where (3:61,m) = 1, Then since
32-616'm > 14-1024, we have v(52379047267,y) = 4. But then

v > 141029, so v(e1,x) + 6.

If v(61,x) = 10, then 199-859- 4242586390571 = ¢(61'0) |y,
| ) _
so that y = 0(6110) > 14°1024, Finally, if v(6l,x) = 12,
2
then 187123[g(61" %) |y. But 187123-0(61'2) > 141027, so

v({61,x) 4 12,

Prdposition 2.3. v{13,y) ¥ 4,
Proof. If v(13,y) = 4, then 30941 = ¢(13%) |x. Now 30941

is not special since otherwise 3|o(30941)|y, If v({30941,x) = 2

then 157-433.14083 = ¢(30941%) |y. since 13%.157%.433.14083¢ >

14-1024, we need only examine the case v{(14083,y) = 2, 1In

this case we have 3:4591.14401 = g(14083%) |x. Now if
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v(14401,x) = 1, then 18.379 = £0(14401) |y and

2 24

2 .- ,
v = 13%10%. 15723797, 433%.14083% > 14.10%%, But vQ14401,x) ¥ 2

since otherwise 3|y. Then v(14401,x) =z 4 so

x = 32.45912.144017 300417 > 14.10%%. Hence v(30941,x) § 2.

If v(30941,x) = 4, then 5.11|¢(30941%y]y. But
6 24 -

h(32,5.112.13%) > 2. Hence v(30941,x) = 6, so x=32.30941%514.10%%,
Proposition 2.4. v(13,y) + 6, 10, 12, 18 or 18.

proof. If v(13,y) = 6, then 5229043 = ¢(13%)[x. But

5229043 = 3(4) = 1(3) so v(5229043,x) = 4. Then x > 141029,

lo)ix. None of

if v(13,y) = 10, then 23.419.859-18041 = ¢g(13
these primes are special since the first 3 are =3(4) and 18041=2(3).

Also v(859,x) & 2 since otherwise 3|¢(859%) |y, Hence x = 32.23%,

1192.850%. 180412 > 141074,

If v(13,y) = 12, then 53.264031.-1803647|x. Hence

% = 32.53.2640312.18036472 5 14.10%4,

1 v(13,y) = 16, then 103.443-15798461357509 -~ ¢(13°) |x,

Since 157984613575092 > 14:10°%, we have 5:13:73+21487-77477
- 14(15798461357509) |y Then y = 57.13'6.73%.21487% 77477%14- 1074,

Finally, if v(13,y) = 18, then 12865927|¢(13'%)[x, so that

x = 32-12865927-0(1318) > 14-10%9,

§5. If- 3|ne(n) then B5}1 + v(3,n¢(n)) =and 78+ v@,ne(n)).
As in 84, we assume Slnc(n) and we let x =n or gfn)
depending on which is divisible by 3. Then V(B,ncfn)) = v(3,x).

Also we let y be the other of n,g¢(n) so that 3+y,

Theorem 3. If n is an odd super perfect number and either
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5|1 + v(3,ng(n)) or 7iL + v{3,no(n)), then n > 7-1024.

Note that o(3Y) = 112 and 3% = 1093. Hence if

511 + v(3,x) then 1lly =and if 7|1 + v(3,x), then 1093 ]y.

26 24

Since 10939> 1177 > 14-107 7, we need only consider

v(ll,y) < 26 and v{l093,y) < 9.

Proposition 3.1, If 511 + v(3,x) then 1 4 v(1l,y) 1is not
divisible by 3 or 5.
Proof, 'If 3[1 4+ v(1ll,y), then 7-19 = 0(112)|x. Since 7

and 19 are non-special, we have h(n,s(n)) = h(34-7?.192,112) > 2,

So 341 + v(11,y).
1 5|1 + v(11,y), then 5|a(114)|x. But v(5,x) $ 1 or

else 3ly. Also h(34-52,114) > 2. Hence 541 + v{(il,y).

We state the next proposition in a more general setting
so that we may use it in proposition 7.1. Note that we do

not assume that 3]ng(n).

Proposition 3.2, If n is an odd super perfect number,

x =n or g,y is the other, 3y, and v(1l,y) = 6, 10,
. 2

12, 16, 18 or 22, then n > 7-10°7,

Proof. Suppose v(il,y) = 6. Them 4345319 - ¢(11%)|x.

Since these primes are = 1(3) and = 3(4), we have that their
exponents are = 4, But ;31'(116)‘j > 14°1024.
If v(il,y) = 10, then 15797.1806113 - 5(111%) |x. Since

these primes are =2(3), they are not special, Since

2
157977 18061132 > 14:10%%, we may assume that o(1119)%)x.
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But 11+0(c(1110)2) S0 Yy =2 1110, 0(0(1110)2) > 14“1024.

Now assume v(ll,y) = 12 so that 1093:3158528101 =
o11t?) |x.  Now 1093%.315828101% > 14-10%2% =0
1093%.3158528101°[x where {a,b} C {1;2} and ab 4 1.

. 24
Then 1140(1093%.3158528108) so y=11'?.1o(1093%3158528101)>14.107",

1f v(ll,y) = 16, then o(11'%)|x. But ¢(11'%)  is
prime. Now c(111%% » 14.10%7 w0 c11l®|x. Now
1140(6(1218)) sy = 11101501218 > 14-20%7.

If v(ll,y) = 18, then 0‘(1118)|x° But 0(1118) is
pfime. As before o(llls)ﬂx and 1l+@(01118)), so
y = 1182000018y > 14007,

Finally, suppose v(l11l,y) = 22, Then 829”0(1122)[x.
Now 829-0(112%) > 14:10%? o 829||x. But 11{¢(829), so

y = 1122.15(820) > 14-107%.

Propositioné.B. 1f 7|1 + v(3,x), then 21 + v(1093,y).
proof. Assume 7|L + v(3,x) and 1093 is the special prime

in y. Then 547 = 15(1093) |x. Now 3|0(547%) so

311 + v(547,x). Suppose v(547,x) = 4. Then 431.208097431 =
0(547%) ly. Now 1093.0(574%)? > 7.10%%, so we have

o547H 2y, But 5476(o547H?) so x = sart.gesarhH?) o
24

14:10°7. Hence v(547,x) } 4.
If v(547,x) = 6, then 7.29.132197305635599 = a(547§)[y.
Then y > 0(5476)2 > 14-1024. Finally, if wv(547,x) =z 10,
24

then x = 3°.54710 & 14.10%4,
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proposition 3.4. If 7|1 + v(3,x) then 341 + v(2093,y).

pProof. Assume 7‘1 + V(35X>' and 3]1 + v(1093,y). Then

4 24

398581 |0(1093%) |x. Since 36.308581% > 14:10%? and 3|0(3985817),

we may assume 398581[x. Then 17-19-617 = $0(398581)|y. If

v(617,y) = 2, then 973931 = 5(6172)|x. Since these primes are

=.1(3), their exponents are = 4 and x = 36~974-39314-898581 > 14-1024.

[f v(617.y) - 4, then 145159381141 = ¢(6177) |x, so that

X = 36'0(6174)2-398581 > 14~1024. Hence v(617,y) =2 6, But then

2 2 2 24

y = 17°.197.6176.1093% > 14:107"7,

proposition 3.5. If 7|1 + v(3,x), then v(1093,y) £+4 or 6.

proof. Assume 7|1 + v(3,x). If v(1093,y) = 4, then

11.31.4189129561 = 0(1098%) |x. since 3% 010032 > 14.10°%, we

may assume 4189129561|x. Then 172-7247629 = $0(4189129561) |y,

so that y = 172.1003%.7247620% > 14.10%%,

[f v(L093,y) = 6, then 7.29-14939.562731116179 = 5(1093%) |x.

mhen x = 38.72.29.14939% 5627311161707 > 14-10°%.

§6. 3fno(n). We first prove

Theorem 4. If n is an odd super perfect number and 3{o(n),

then n > 7-1024.

Proof. Suppose 3%c(n),' Then theorems 2 and 3 imply that

v(3,¢(n)) = 10. Lemma 2 allows us to write n =-p§bl-p§b2h...'pibk

where p, <'p2 < L0 < Py ~are primes. Now lemma 1 implies
that V(3,c(p§bi» = v(3,2bi+1) or O depending on whether

p; =1 or 2(3). Since BIO[U(n), we have

2 2 2 2 2

<)
0 2 72132102312 372 43%.61 24

672732792 > 7-10%7,
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Theorem 5. If n is an odd super perfect number and

3|ng(n), then n > 7-1024.

Assume 3|ng(n). From theorem 4 we may assume 3|n. Since
2

350-5 > 7'1024, lemma 2 implies we may assume v{(3,n) < 50.

Also from lemma 2 and theorems 2 and 3 we may assume

1 + v(3,n) 1is not divisible by 2, 3, 5 or 7. In proposi-

tions 5.1 to 5.5 we shall show there is no allowable value
24

for v{3,n) for which n < 7-:10 .
proposition 5.1L. v(3,n) ¥ 10,
proof. If v(3,n) =10 then 23-3851 = g(3'9) |g(n). Since

38518 > 14-1024 and 3851 = 3(4) all we need show is that

v(3851,5(n)) + 2, 4 or 6.

If 38512Hc(n) then 13-1141081 = 0(38512)ln, Since
these primes are = 1(3) and 3+c(n) we have n = 310‘0(3851254>
7-10°%,  1f 38514Hc(n) then 5.2289401-19218301 = 0(38514)‘n,

so h 2 310.0(38514)2 > 7LLOZAT”’Finally if 38516nc(n), then

since 3+c(38516), we have n =2 310-0(38516) > 7*1024.

Proposition 5.2. The speckal prime is =17 (36) .

proof. Suppose p is the special prime and pbnc(n), Then

24

. p = 5, Since 553 > 14410 and b = 1(4) we have

33+b +1, Then lemma 1 implies v(S,g(pb)) < 2 + v(3,p+l).,

Now v(3,n) = v(3,c(c(n))) = 12, Since

2 2 2 2 2 2 24

22.132.102.312.372. 43%.612.67%.73% > 14.10°", 1emma 1 implies

v(3,c(pb)) = 4, Then v(3,p+l) = 2, and since p = 1(4) we
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have p = 17(36).

proposition 5.3. v(3,n) 12 or 16.
proof. If v(3,n) =12, then 79716} = 0(312)\c(n). Since

797161 § 17(36), it is not special. If v (797161, g(n)) = 2,

chen 3+61-151-22996651 ~ ¢(797161%) |n. Then n = 312, g (797161%) %>

71024, 1r 797161%|0(n), then n 2 312, orom161?) > 7.10%9.

Finally, if v(797161,c(n)) = 6, then o(n) > 14-1024.

't v(3,n) - 16, then 1871-34511 = a(3'°)|o(n). Neither

prime is = 1(4), so neither is special, Since the special

prime is at least 17, and 17'187123-345114 > 14-1024, we have

34511°%||(n), Then 13+19-4822039 - ¢(34511%) |n, Hence

© » 34603451192 > 7.10%9,

Proposition 5.4, If v(3,n) = 2a, if no pfimé factor of

532 is = 17(36), and if 5(3%%) is the product of

k distinct primes, then 2a < %(51+k).

Proof. Let a(BZa) = PytPg’ e ‘P Then proposition 5.2
and the assumption that no p;, = 17 (36) imply
p2P1.p5P2: o p2Pkflo(n)  for somo by, by, ..., by. Lemmal

implies vcs,g(pfbi)) < v(3,2p,41) so that if m, 1is that

part of U(p?bi) which is prime to 3, then m, = c(p?biL¢2bi+l)z

1 2 . .2a-k,_ 2 2 9

'S"G(p.i) e Hence it z 3 ) 1'm2’ Py mk - 3 pl'pz L pk =
- 2 ~k-. o

323_koc(32a) > 32a k(%QSZa)Z Ba-k 2.

2a
oM

= 16+3 Then the assump-

tion n < 7-'1024 implies 6a - k - 2 + 10g316 < 1og3(7-1024),

1

<o that 6a - k < 52. Then 6a - k < 51, that is 2a < S(5L4K) .
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Proposition 5.5, v(3,n) % 18, 22, 28, 30, 36, 40, 42 or 46.

Proof. We note the following prime factorizations:

18y _ 1597.363889

1l

g(3

0(322) = 47-1001523179

28

g(3°°) = 59.28537 20381027

0(330) = §83.102673-4404047

5358y = 13097927.17189128703

5(390) - 83.2526913.86950696619

5(3%2) - 431.380808546861411923

1223.21997+-5112661 96656723

1l

5346y

In each case proposition 5.4 is applicable, but also in each

case 2a > %(51+k),

§7. b5ing(n). In this section we prove

Theorem 6. If n is an odd super perfect number, and

51nc(n) the n > 7°1024.

Suppose 5|ng(n), Let p be the special prime. In
the previous section we showed that 3 +na(n).Hence p = 1(3).
Also if q is a prime factor of n or a(n) and if
q = 1(3), then the exponent on q 1is not = 2(3). We
o stall 1et x =n or o(n) and y the other assum-

ing  5|x. Note  that we do. not exclude 5ly.
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, 36 . 24
Since 5 = » 141077, we may assume v({(5,x) < 36. Also we.
have v(5,x) even. In propositions 6.1 to 6.4 we show there

is no allowable valuye for v{(5,x) for which n < 7=i024.

Proposition 6.1. 341 + v(5,x).

proof. If 3|l + v(5,%x), then 31 = ¢(57)|y. Since 31 =1(3),
we have 341 + v(31,y). If v(3l,y) = 4, then

5.11:17351 = c(314)!x. Since 17351 = 3(4) it is not special,

1f 173512nx, then 13-1063:21787 |y. Since 1063 = 21787 = 1(3) =

3(4), we have y = 13*314310634‘217874 > 14-1024. If 173514nx
then 5-11-1648012040336791 = 0(173514)\y, so that y = 0(173514)2>
141024, 1 173518 |x, then x 2 52.17351% > 14.10%%. Hence

v(31,y) | 4.
If v(31,y) = 6, then 917087137 = o(31%)|x. 1f 917087137

is special, then 11.1451-28729 = 29(917087137) |y, so that

y > 112.318.1451%.28720% > 14:10%2%,  since 3|0(917087137%)

we have 9170871374|x which gives x > 14-1024. Hence

v(31,y) + 6.

1t v(31,y) = 10, then 23-397-617.150332843 = 0(31'0) |x

and x = 52.232.3072.617.150332843°% » 14:10%%, 1 v(31,y) =12,

then 42407-2426789.7908811 - o(31'%) [x and x = 5°.42407°.
2426789.79088112 > 14-102%, 1£ v(31,y) = 186, then
5+c(3116)lx, so that x = 52-0(3116) > 14-1024. Hence v{(3L,y) = 18,

so that v = 3118 }.14-1024.

o

proposition 6.2. 541 + v(5,x),

Proof. If 5[1 + v{(5,x) then 11:71 = a(Sq)ly. Suppose
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3|1 + v(71,y). Then 5113 = ¢(71%) |x. If 5113 is special,

‘then 2557 = %0(5113)\y. Now 3\0(25572) and if 25574“y, then
11.12011-323683781 = ¢(25577) |x. But then x > 51,5113 02557 %>
141024, Atso 112.712.2557%> 14.10%%. Hence 5113 is not
special. Since 5113 = 1(3), we have v(5113,x) ¥ 2. If 51134nx,
then 11-4751.13080080081 = 0(51134)ly. These primes are

= 2(3), so they are non-snecial,and y = 0‘(51134)2 > 14«1024.

4. 6 24 4) |

Hence v(5113,x) = 6. Then X 29 51137> 7-10 (cf. lemma

Hence 311l + v{(71,y).

1

If 714Hy then 5-11.211.2221 = 0(714)lx. Now 211 = 1(3)
3(4) so 211 is non-special and 34 1 +v(211,x). If 2114nx,

then 5+1361-292661 = 0(2114)|y. These primes are all = %(3)

so none is special. Then y 2 112-714-0(2114)2 > 14-1024.
If 2116ux then 7“0(2116)\y so that y 2 112.71%7% o215 >
14e1024, since v(7,y) | 2. Hence lelolx, so that

<2 5%112.2110 2221 > 14-10%%,

1t 718|ly, then 7.883.21020017 = ¢(71%) |x. But 7 =883 =
3(4) = 1(3) so that x = s4.74.983%. 21020017 > 14-10°%. 1f

7110y, then 23q = o (71*% |x and q is a prime = 3(4).

men x = 5123242 > 141029, 1£ 711 %[y, then since 147112 5
7-1024, we have 112Hy= But 5%0(112'7112), so that x = 5%
0(112-7112) > l4e1024, Hence 7116[f. But then y = 112-7116 >
14-10%4,

Proposition 6.3. X =n and the special prime is = 49(100).
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Proof. Propositions 6.1 and 6.2 imply that v(5,x) = 6; S0

Sslc(y), Let y' be the product of the non-special primes

in y with correct exponents, so that if y = n, then y' =y.
1f 5°|gCy'), then lemma 1 implies y' = d.s1f atertnn? 5
14-1024. "Hence y = g(n), x =n and if pb is the special

prime power in y, then 52lc(pb). Lemma 1 and the above esti-

mate show that p % 1(5), sothat p = 4(5). Suppose
49

p $ 49(100). Then 5fjp+l. Now p = 109, and since 1097 >
14-1024, we have v{(H,b+l) = 1. But 52lc(pb), so v(5,b+l)=1
4 .4 .4 .4 24

and 52uc(pb). Then y = 1099-11 *31 7417617 > 14.107 7.

Hence p = 49(100).

Proposition 6.4. v{(5,n) + 6, 10, 12, 16, 18, 22, 28, or 30.

I

proof. If v(5,n) = 6, then 19531 = g(5°%) |g(n). Since

19531 = 1(3) = 3(4), we have v(1953L¢(n)) = 4 and even., If

v (19531,0(n)) = 4, then 5-191-4760281+32009891 - ¢(19531%) |n.

Then n = 57001953112 > 7.10%%. mence 19531%|a(n), so

g(h) = 14-1024. Thus v{b,n) + 6.

The primes listed in the following factorizations are

211 = 1(3) and % 4901000 : o(5'%) - 12207031, o(5'%) = 305175781,
#(558) = 409.466344409. Hence if v(5,n) = 10, 12 or 16
then c(5v(5’n))4lc(n), so that g(n) = 0(510)4 > 14'1024.

The primes involved in the following factorizations

191+-6271-3981071L, 0(522) =

Il

on all F 49(100): o (5'%)
59.35671 - 22125096444329. Hence

i

8971 .332207361361, 0(528)

-
T
.
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if v(B,n) = 18, 22, or 28, then a¥(5 1) 21c(n) so that

oln) = o582 5 14.10%4,

Finally if - v(5,n) = 30 then: 1861“0(530)Ic(n) - Now

1861 = 1(3) # 49(100) so o(n) = 1861°-¢(5°0) > 14.10%%.

§8. Conclusion. 1In this section we conclude our proof that

there are no odd super perfect numbers < 7=1024, If n -is an

odd super perfect number, then 2 = h(n)h(g(n))., Then either

i

h¢n) > /2 or h(g(n)) > /2. Let x be the one of n,g(n)

for which h{x) > /2, and let y be the other,

Theorem 7. If n is an odd super perfect number, x = n ox
g(n) where h(x) > /2, and either llix or lslx) then n > 7-1024

Before we prove theorem 7 in propositions 7.1 and 7.2,

we will show how it is sSufficient to prove our main result;
24

Suppose n 1is an odd super perfect number and n < 7:10 . Then
(2:3-5+7+11:13,x) =1 using theorems 1, 4, 5, 6 and 7. Now

2 2 2 2 2 2 2L432, 2 24-

172.19%.23%.29%.312.37%- 11 472.532.50 > 14.10%% so x has

no more than 10 distinct prime factors., If x = I Py 21 then

: _ A _
h(x) = Th(p, 1) = Mp, "1™ -1) /o, -1)p; T < 1p;/(p;-1) < %}g- 19, .28,

29.31 37 41 43 47 53 . C e .
28 30°36 46 4236 59 < /2. 'This contradiction establishes our

main result,

Proposition 7.1. 11l{x.
proof. Suppose 11|x, Since 7]0(112) and 5[0(114), we have
3, 541 + v(11,x). Then proposition 3.2 implies v(1l,x) = 28,

s0 X > 14‘1024.
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Proposition 7.2, 13fx.
Proof. Suppose 13|x., Since 710(13) and 3[0(132) we
have 2, 341 + v(13,x). Suppose v(13,x) = 4. Then 30941 =
0(134)}y. Now 3|c(30941) so 30941 is not special, If

2
30941 ||y, then 157-433-14083 = 0(309412)|x° Now these primes
4 4 4

are all = 1(3) and 14083 $ 1(4) so x = 137157 -433-14083" >
14-1024. Since 5‘0(309414) we have v{30941,y) = 6. Then
y > 1491024.

Hence v(13,x) = 6. Now if 19|x, then v(19,x) =z 4

since 3[o(19%). But 13%-17%.10%.23%.20%.31%.37%. 01 >

/
13%.172.232.20%2.312.372. 1%, 43 > 14-10%?, 50 x is aivisidble

. . , 13 17 19 23 29 31 37
by at most 7 distinct primes. Then h(x) < 12°16°18°22°98°35°36

/2, a contradiction,
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