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Abstract. A pair of odd primes is said to be symmetric if they are 1 modulo

their difference. A theorem from 1996 by Fletcher, Lindgren, and the current
author got an upper bound for the distribution of primes that belong to a

symmetric pair. In this paper that theorem is improved to what is likely to

be a best possible result. In addition, we show that there are infinitely many
pairs of symmetric primes.

1. Introduction

A pair of odd primes p < q is said to be a symmetric pair if gcd(p−1, q−1) = q−p.
For example, if p, q are a twin prime pair, they are also a symmetric pair. We say
a prime is symmetric if it is a member of some symmetric pair, and otherwise,
we say it is asymmetric. In [3] it is shown that most primes are asymmetric. In
particular, the number S(x) of symmetric primes p ≤ x is O(π(x)/(log x)0.027). We
conjectured that the exponent 0.027 could be improved to η + o(1), where

η := 1− 1 + log log 2

log 2
= 0.086 . . . .

In this note we prove the conjecture.

Theorem 1.1. For all large x, we have

S(x) ≤ π(x)

(log x)η
(log log x)O(1).

We also are able to prove another conjecture from [3] that there are infinitely
many symmetric primes.

Theorem 1.2. We have

S(x)� π(x)

(log x)49
.

Of the two bounds, we believe that Theorem 1.1 is closer to the truth, and in
fact, it seems likely that we have equality in Theorem 1.1.

The constant η appears in a number of problems. An early appearance is in
the Erdős multiplication table problem, where after work of Erdős, Tenenbaum,
and Ford, we now know that the number M(N) of distinct entries in the N × N
multiplication table is N2(logN)−η(log logN)O(1). (In fact, Ford [4] showed that
the “O(1)” is −3/2 with the resulting expression of the same magnitude as M(N).)
Another, more recent appearance of η is in the paper [2] where the odd legs in
integer-sided right triangles with prime hypotenuse are considered. This note uses
some of the techniques from [2].
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Our proof of Theorem 1.2 uses an old result of Heath-Brown [7] plus the frame-
work of the new results of Zhang, Maynard, Tao, et al. on small gaps between
primes.

In Sections 2 and 3 we prove our theorems. In Section 4 we present some new
computations of symmetric primes. In Section 5 we close with a few problems of a
somewhat different nature.

2. The proof of Theorem 1.1

Let ω(n) denote the number of distinct primes that divide n and let Ω(n) denote
the number of prime factors of n counted with multiplicity.

Let S1(x) denote the number of primes p ≤ x with all prime factors of p − 1
at most x1/ log log x. Since the number of integers up to x with all prime factors
at most x1/ log log x is O(x/(log x)2) (see de Bruijn [1, Eq. (1.6)]) it follows that
S1(x) = O(π(x)/ log x). Thus, we may assume that we are counting symmetric
primes p ≤ x where there is a prime r | p− 1 with r > x1/ log log x.

Let S2(x) denote the number of primes p ≤ x with Ω(p − 1) > L, where L =
b(1/ log 2) log log xc. We show that

(2.1) S2(x) ≤ π(x)

(log x)η
(log log x)O(1).

Write p = ar + 1, where r is the greatest prime factor of p − 1. Since the count
for S1(x) is negligible in comparison to (2.1), we may assume that r > x1/ log log x.
For a given choice of a < x1−1/ log log x, the number of primes r ≤ x/a with ar + 1
prime, is by Brun’s method (see [5, Eq. (6.1)]), at most

x

a(log x)2
(log log x)O(1).

We sum this expression over a, assuming that Ω(a) ≥ L. For L ≤ Ω(a) ≤
1.9 log log x, we use [6, Theorem 08], finding that

∑
1/a ≤ (log x)1−η(log log x)O(1),

which is consistent with our goal (2.1). For larger values of Ω(a) we use [6, Exercise
05], getting

∑
1/a� (log x)0.69. This completes the proof of (2.1).

We write p = ar + 1 where r > x1/ log log x is prime, and Ω(a) < L. Since p is
symmetric, there is some d | a with at least one of p+d, p−d, p+dr, p−dr prime.
Write a = dm. For a given pair d,m with dm < x1−1/ log log x, let R(x, d,m) denote
the number of primes r ≤ x/dm with dmr+1 prime and at least one of dmr+d+1,
dmr− d+ 1, dmr+ dr+ 1, dmr− dr+ 1 prime. Again by Brun’s method we have
uniformly for x large that

R(x, d,m) ≤ x

dm(log x)3
(log log x)O(1).

It remains to sum this expression over pairs d,m with dm < x1−1/ log log x and
Ω(dm) < L. Let E denote the reciprocal sum of all primes and prime powers less
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than x. We have∑
dm<x1−1/ log log x

Ω(dm)<L

1

dm
≤

∑
i+j<L

∑
d<x
ω(d)=i

1

d

∑
m<x

ω(m)=j

1

m

≤
∑
i+j<L

1

i!
Ei

1

j!
Ej =

∑
k<L

1

k!
Ek

∑
i+j=k

k!

i!j!

=
∑
k<L

1

k!
(2E)k � 1

L!
(2E)L,

since E = log log x + O(1). A short calculation then shows that this expression
is (log x)2−η(log log x)O(1). Thus, the sum of R(x, d,m) over pairs d,m is at most
π(x)(log x)−η(log log x)O(1), so completing the proof.

3. Infinitely many symmetric primes

In her dissertation, Spiro showed that the equation d(n) = d(n + 5040) has
infinitely many solutions, where d(n) is the divisor function. Heath-Brown [7] was
able to replace 5040 with 1 in this theorem, and a key lemma (also see [8, 9]) was the
following statement. For every k there are distinct positive integers a1 < · · · < ak
such that for each 1 ≤ i < j ≤ k, we have gcd(ai, aj) = aj − ai. An example of
such a set when k = 4 is {6, 8, 9, 12}.

If we have just 2 numbers a < b with gcd(a, b) = b − a, then any integer n for
which p = an+1 and q = bn+1 are both prime produces the symmetric prime pair
p, q. And so, the prime k-tuples conjecture would immediately give us infinitely
many symmetric pairs. This is just a generalization of the thought that twin prime
pairs are symmetric. These statements are still conjectural, but we do have the
following new theorem. Say we have k distinct linear functions ait+ bi, where ai, bi
are integers, ai > 0. They are admissible if for each prime p there is some integer t
with none of ait+ bi divisible by p.

Theorem 3.1. For each positive integer m there is some integer k = exp((O(m))
such that among k admissible distinct linear functions ait+ bi, there are at least m
of them which simultaneously represent primes infintiely often. In fact the number
of integers t ≤ x at which the m functions are all prime is � x/(log x)k.

This is essentially Maynard [10, Theorem 3.4]. After Polymath 8b (see [11, 12]),
we now know that when m = 2 we may take k = 50. We apply this to the linear
polynomials a1t + 1, . . . , a50t + 1 with a special Heath-Brown set {a1, . . . , a50} as
above. Note that these polynomials form an admissible set since their common
value at t = 0 is 1. Say a < b are in this set and the number of n ≤ x with
both p = an + 1, q = bn + 1 prime is � x/(log x)50. As noted above, p, q form a
symmetric pair. Our Theorem 1.2 follows immediately.

4. Computations

In [3] some values of S(x) for x up to the 105th prime were given. The data
did not strongly suggest that S(x) = o(π(x)), in fact it seemed more plausible that
S(x)/π(x) ≈ 0.83. Using Mathematica we have extended the calculation to the
108th prime and we see that S(x)/π(x) continues to be in no hurry to get to 0, but
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progress towards this limit is somewhat discernible. The descent to 0 does indeed
appear to be not so different than the main term in our upper bound.

Table 1. Tabulation of S(pn), the number of symmetric primes
to the nth prime.

n S(pn) S(pn)/n 1/(log pn)η

10 9 0.9000 0.9008
102 86 0.8600 0.8536
103 864 0.8640 0.8279
104 8473 0.8473 0.8101
105 83263 0.8326 0.7964
106 819848 0.8198 0.7854
107 8098086 0.8098 0.7761
108 80112625 0.8011 0.7681

5. Graph problems

Consider a graph on the odd primes where two primes are connected by an
edge if they form a symmetric pair. The asymmetric primes are isolated nodes.
Must every connected component be finite? At the other extreme, removing the
asymmetric primes, is the graph connected? If not, what is the least symmetric
prime that is not in the component containing the prime 3? Does the graph have
infinitely many components? Does it contain a complete graph Km on m vertices
for every m? The answer to this last question is “yes”, since we can apply Theorem
3.1 and the argument of Section 3 to see this. Clearly there cannot exist an infinite
complete subgraph since if p < q are a symmetric pair, then q < 2p. Say a prime
p is m-symmetric if it is in a Km but not a Km+1. It would be interesting to
investigate the distribution of m-symmetric primes; the number of them to x is
x/(log x)Om(1), but what can be said about the exponent here?
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