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Here is the 17
2 × 13

2 rectangle, with the diagonal drawn. We’re

interested in the interior lattice points.
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The number of interior lattice points below the diagonal is

7 + 6 + 5 + 3 + 2 + 1 = 24

and the number above the diagonal is 8 × 6 − 24 = 24.
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However, doing this with the two primes 7 and 3, there are just

3 lattice points interior to the 7
2 ×

3
2 rectangle, and so they are

not split evenly above and below the diagonal.

A standard proof of quadratic reciprocity, counts the points

above and below the diagonal in the p
2 ×

q
2 rectangle, and shows

the two counts have opposite parity just for the case when

p ≡ q ≡ 3 (mod 4). When p or q is 1 (mod 4), it’s the same

parity.

But sometimes, not only are the counts of the same parity,

they are exactly the same, as with 13 and 17. They are also

exactly the same with 13 and 19, but not the same (but the

same parity) with 13 and 23.
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We say two odd primes p, q are a symmetric pair if the counts

of the interior lattice points in the p
2 ×

q
2 rectangle nestled in the

first quadrant, both above and below the main diagonal, are

equal.

Say a prime is symmetric if it is a member of a symmetric pair,

and otherwise say it is asymmetric.
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The arithmetic condition for p, q to be a symmetric pair is that

∣p − q∣ = gcd(p − 1, q − 1).

A criterion: A prime p is symmetric if and only if there is an

even divisor d of p − 1 such that either p − d or p + d is prime.

For example, 11 is symmetric because 11 + 2 = 13 are a

symmetric pair. (Any prime in a twin-prime pair is symmetric.)

And 23 is asymmetric since none of 23 ± 2, 23 ± 22 are prime.

It is natural to ask how the symmetric and asymmetric primes

are distributed within the sequence of primes.
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Some evidence:

Among the first 108 odd primes, more than 80% of them are

symmetric, 80,112,625 to be precise.

A heuristic argument shows that the number of symmetric

pairs of primes with one member below x is ∼ cπ(x), for a

positive constant c.

So, what would you conjecture for the number of symmetric

primes below x?
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Theorem (Fletcher, Lindgren, Pomerance, 1996): The

number of symmetric primes below x is O(π(x)/(logx)0.027). In

particular, asymptotically 100% of primes are asymmetric.

Left unsolved by this paper: Is this upper bound tight? Are

there infinitely many symmetric primes?
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Theorem (Fletcher, Lindgren, Pomerance, 1996): The

number of symmetric primes below x is O(π(x)/(logx)0.027). In

particular, asymptotically 100% of primes are asymmetric.

Left unsolved by this paper: Is this upper bound tight? Are

there infinitely many symmetric primes?

Theorem (Banks, Pollack, Pomerance, 2019): The number

of symmetric primes below x is ≤ π(x)/(logx)η(log logx)O(1),
where η = 0.086 . . . is the Erdős–Ford–Tenenbaum constant

1 − (1 + log log 2)/ log 2. In addition, there is a positive constant c

with the count > π(x)/(logx)c; in particular, there are infinitely

many.

Heuristically, the upper bound in the BPP theorem is tight.
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The Erdős–Ford–Tenenbaum constant

η = 1 − (1 + log log 2)/ log 2 = 0.086 . . . :

So named because of the multiplication-table theorem: The

number of distinct entries in the N ×N multiplication table is of

magnitude N2/(logN)η(log logN)3/2, proven by Ford, after

earlier work by Tenenbaum, and still earlier work by Erdős.
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The constant η pops up a lot in combinatorial number theory:

● The density of integers with a divisor between n and 2n.

● The distribution of values of Carmichael’s universal
exponent function.

● The distribution of side lengths in Pythagorean triples with
prime hypotenuse.

● The density of the integers divisible by a shifted prime
p − 1 > y.

● Symmetric primes.
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Not all occurrences are genuine. Recently Guo and

Weingartner showed that the number of primes p ≤ x with p − 1

practical (that is, every integer up to p − 1 is a subsum of

divisors of p − 1) is ≤ π(x)/(logx)η+o(1). But in work-in-progress,

Weingartner and I have replaced η with 1.

Maybe the same will happen with symmetric primes, though I

don’t think so. It would contradict the Hardy–Littlewood form

of the prime k-tuples conjecture.
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Here is the idea of the upper bound proof:

We first show that we may focus attention on those primes

p ≤ x where p − 1 has a prime factor r > x1/ log logx and

Ω(p − 1) ≤ L, where Ω counts the number of prime factors with

multiplicity, and L = ⌊ 1
log 2 log logx⌋.

Assume p is symmetric and write p − 1 = ar. Then there is some

factorization a = dm with at least one of p ± d, p ± dr prime. Fix

d,m. By the sieve, the number of primes r such dmr ≤ x,

dmr + 1 = p is prime, and one of p ± d, p ± dr is prime is

≤ x/(dm log3x)(log logx)O(1). We now sum 1/dm with Ω(dm) ≤ L
and dm ≤ x1−1/ log logx ≤ x.
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Let E denote the reciprocal sum of all primes and prime powers

at most x, so that E = log logx +O(1). Also, let ω(n) denote the

number of distinct primes dividing n. We have

∑
dm≤x

Ω(dm)≤L

1

dm
≤ ∑
i+j≤L

∑
d≤x
ω(d)=i

1

d
∑
m≤x

ω(m)=j

1

m

≤ ∑
i+j≤L

1

i!
Ei

1

j!
Ej

= ∑
k≤L

1

k!
(E +E)k ≪ 1

L!
(2E)L

= (logx)2−η(log logx)O(1).

Since our count is ≤ ∑
d,m

x

dm log3x
(log logx)O(1), the upper bound

argument is complete.
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Towards a lower bound:

Assuming the quantitative form of the prime k-tuples

conjecture, one can see that our sieve-derived upper bounds are

essentially correct. And re-doing the argument for those primes

p with at least two factorizations p − 1 = dmr = d′m′r giving a

symmetric pair, using just the sieve upper bound, we get

approximately the same count. So, assuming strong k-tuples,

the upper bound is tight.

How can we obtain a rigorous lower bound?
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By a result of Heath-Brown, for any k there are integers

a1, . . . , ak such that each ∣ai − aj ∣ = gcd(ai, aj).

And by a famous result of Maynard–Tao, if m is given and k is

large enough depending on m, then {a1, . . . , ak} contains a

subset {ai1, . . . , aim} such that ai1n + 1, . . . aimn + 1 are

simultaneously prime for infinitely many n. But then these

primes are such that each pair of them is symmetric.

Looking at a quantitative version of this result when m = 2 we

get that there are ≫ x/ log50x symmetric primes up to x.

So now we’re haggling over exponents: π(x)/ log49x for the

lower bound and π(x)/ logη x for the upper bound.
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Consider the symmetry graph on the odd primes, where two

primes are connected by an edge if they are a symmetric pair.

So our proof shows that for each m, there is a Km (complete

graph on m vertices) embedded in the graph.

For example: 13, 17, 19 are pairwise symmetric, as are

661, 881, 991, 1321.

In fact, applying a consequence of the Maynard–Tao result

due to Banks, Freiberg, & Turnage-Butterbaugh, one can

show that for any m there are infintely many m-tuples of

consecutive primes that are pairwise symmetric.

So, the Km can be made of consecutive primes.
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Throwing out the asymmetric primes, which correspond to

isolated vertices in the graph, one can ask how many connected

components there are which include a prime up to x.

Presumably this tends to infinity, but how fast?

Is there an infinite connected component?

Is the component containing 3 infinite?
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In a recent paper Kalmynin has shown that 3343 and 4457 are

a symmetric pair of primes that’s isolated in the symmetry

graph. That is, they comprise a connected component of the

graph.

In particular, he showed that 3343 is the smallest symmetric

prime that is not in the component of the symmetry graph that

contains 3.

He’s shown, assuming the strong form of the prime k-tuples

conjecture, that any finite connected graph is contained as a

connected component infinitely often in the symmetry graph.

Perhaps there’s some hope to prove this rigorously using the

Maynard–Tao circle of ideas.
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Thank You
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