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Factoring:

An idea of John Pollard:

Let My be the lcm of the integers in [1, y]. Suppose p is an odd

prime with p− 1|My. If n is an integer divisible by p, then

p | gcd(2My − 1, n).

The gcd can be computed in about y arithmetic steps with

integers the size of n. Yet p could be much bigger than y, and if

so, we could have a cheap way to discover a prime factor of n.

For example, 420 |M7, so 421 should be very easily

discoverable as a prime factor of any number it divides.
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To simplify slightly, say a number is y-smooth if all of its prime

factors are in [1, y]. Then p is easily discoverable as a prime

divisor if p− 1 is y-smooth for a small value of y.

Because of this, cryptographers like to set up the RSA

cryptosystem with so-called “safe” primes p of the form 2q + 1,

where q is prime. Then p− 1 is as unsmooth as possible.

Unsolved problem: Are there infinitely many safe primes?

Heuristically there are plenty of them, and this is borne out in

practice—so this suffices for the practicing cryptographer.
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Just about 27 years ago exactly, Hendrik Lenstra delivered
some bad news to cryptographers: no prime is truly safe!

The Pollard p−1 factoring method depends on the unit group
of Fp having smooth order. If it doesn’t have smooth order, the
method fails.

What Lenstra suggested was to replace F×p with an elliptic
curve group Ea,b(Fp) for random choices of a, b. If the curve is
nonsingular, we know after Hasse that the order #Ea,b(Fp) is in
the interval Ip := (p+ 1− 2

√
p, p+ 1 + 2

√
p).

So, one can basically think that one is choosing a random
integer in this Hasse interval. In fact Lenstra proved that if
there are a fair number of choices of y-smooth integers in Ip,
then there is a fair chance of landing upon one such choice,
and so discover p as prime factor of some number n.
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Helmut Hasse Hendrik Lenstra
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Unsolved problem: Are there a fair number of y-smooth
integers in Ip = (p+ 1− 2

√
p, p+ 1 + 2

√
p)?

Heuristically yes, with an optimal value of y as

exp
(√

(1/2) log p log log p
)
.

(A theorem of Canfield, Erdős, & P from 1983 asserts that
with L = exp(

√
log p log log p), the probability that an integer in

[p/2, 3p/2] is Lα-smooth is about L−1/(2α). If this holds for the
smaller interval Ip and one applies the elliptic curve factoring
method with y = Lα, then the work per choice of curve is
about Lα and the expected number of curves is about L1/(2α),
for a total of Lα+1/(2α) steps. Thus, α =

√
1/2 is optimal.)

However, rigorously, we cannot even prove that Ip has even one
y-smooth number much less as many as suggested by the CEP
theorem.
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Luckily the numbers we are trying to factor do not know this!
They get factored as quickly as we heuristically predict they
should.

E. Rodney Canfield Paul Erdős
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Some work-arounds and progress:

In 1992, Lenstra & P gave a rigorous factorization algorithm
with the same worst-case complexity that the elliptic curve
method is conjectured to have. The algorithm uses quadratic
forms of negative discriminant, not elliptic curves. However, it
relies on examining many auxiliary numbers, keeping those that
are y-smooth, until about y of them have been assembled.
(With elliptic curve factoring, one needs just one y-smooth
number.) One can use the elliptic curve method to examine
these auxiliary numbers for y-smoothness, giving up after a
pre-determined amount of effort is expended. This can be used
as a subroutine in a rigorous algorithm since we were able to
prove that the elliptic curve method usually works, and our
auxiliary numbers are provably random enough so as not to
skew things towards possible exceptional cases.
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Soundararajan (2010): Assuming the RH, for each ε > 0 there

is some number c(ε) such that for all large x, the interval

[x, x+ c(ε)
√
x] contains at least one xε-smooth integer.

One can rigorously prove that slightly longer intervals have

plenty of smooth numbers. In particular, intervals of the shape

[x, x+ x3/4] suffice. In a series of papers of Lenstra, Pila, & P

from 1993, 2002, and “to appear” (actually, “to be written”),

we prove this assertion and give a hyper-elliptic factorization

method. This uses Jacobian varieties of hyper-elliptic curves of

genus 2, and it stands (or will stand when completed) as the

only rigorous method to recognize any given y-smooth number

in fewer than yε elementary steps.
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K. Soundararajan Jonathan Pila
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Primality testing:

Lucas (ca. 1876): If ap−1 ≡ 1 (mod p) and a(p−1)/q 6≡ 1

(mod p) for every prime q | p− 1, then p is prime.

For example, Fn := 22n + 1 is prime if and only if

3(Fn−1)/2 ≡ −1 (mod Fn).

The Lucas method is excellent whenever p− 1 = #F×p is easily

factorable (basically a smooth number times a prime or prime

power). What might one try if p− 1 is not easily factorable?

Hmmm. . .
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In his doctoral dissertation from 1983, René Schoof gave a
deterministic, polynomial-time algorithm to compute #Ea,b(Fp).
If p− 1 is not easily factorable, then perhaps #Ea,b(Fp) is?

In his doctoral dissertation from 1989, Joe Kilian, jointly with
his advisor, Shafi Goldwasser, thought of applying the Lucas
idea in the elliptic context, using the Schoof algorithm as the
key subroutine. Theirs is a random algorithm that expects to
rigorously prove primality for prime inputs p in polynomial time,
provided each Hasse interval Ip contains as many easily
factorable numbers as might be expected. In particular, it
should have at least

√
p/ log p integers of the form 2q, with q

prime. Heuristically, this is true.

If one hits upon a curve with order 2q, then one can fashion a
proof of “if q is prime, then p is prime”. Then one can iterate,
finding a curve of order 2r in Iq, and so on.
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René Schoof Joe Kilian (et al.)
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Shafi Goldwasser D. R. Heath-Brown
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Unsolved provlem: Prove that each Hasse interval Ip contains

at least
√
p/ log p integers of the form 2q with q prime. Prove

that the interval has at least one such number!

Using results of Heath-Brown it is possible to show that most

short intervals contain many easily factorable numbers, and as

a consequence, most primes can be proved prime in expected

polynomial time via the Goldwasser–Kilian algorithm.
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In 1992, Adleman & Huang found a way to rigorously remove

any possible exceptional set from the Goldwasser & Kilian

method. Namely, instead of using elliptic curves, use Jacobian

varieties of hyper-elliptic curves of genus 2. Here the analog to

the Hasse interval is long enough to guarantee that there are

plenty of primes in the interval. Then one has a reduction: “if

q is prime, then p is prime,” but now q ≈ p2. It’s hardly a

reduction, but one gains randomness, and so it is likely we will

land outside the Goldwasser–Kilian exceptional set, so that we

can then descend using elliptic curves.

15



Leonard Adleman Ming-deh Huang
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In some sense this is all moot following the 2002 deterministic,

polynomial-time primality test of Agrawal, Kayal, & Saxena.

This test uses the arithmetic of finite fields and is less

dependent on analytic number theory than the elliptic curve

tests. The fastest deterministic version, due to Lenstra & P,

runs in (log p)6+ε bit operations.

However, in another sense, the elliptic curve methods are alive

and kicking. This is in the practical sense of actually proving

large primes are really prime. The AKS test can maybe handle

numbers of 100 digits, but with elliptic curves, we can handle

numbers of 10,000 digits. However, we do not use Schoof’s

beautiful algorithm, but instead rely on curves with complex

multiplication.
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Suppose D is the discriminant of an imaginary quadratic field
over Q and p is a prime which splits in Q(

√
D) and for which

there are integers u, v with

4p = u2 + |D|v2

(asymptotically, 1/h(D) primes p which split in Q(
√
D) have this

property, so 1/2h(D) in all; these are the primes that split in
the Hilbert class field). Then there are elliptic curves over Fp
with group orders

p+ 1± u.

(If D = −3 or −4 there are a few more curve orders.) It is fairly
easy to find u, v if they exist (by an algorithm of Cornacchia),
and somewhat harder to find actual curves with the orders
p+ 1± u. The point being, if the group orders are not useful
for us (e.g., easily factorable), we need not construct the
actual curves.
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Oliver Atkin François Morain Jeff Shallit
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This then becomes the backbone of the Atkin–Morain elliptic

curve primality test. With an improvement of Shallit, the

heuristic running time to prove the primality of a prime p is

O((log p)4+ε) bit operations. The actual proof produced is

shorter by a factor log p.

There is actually one special elliptic curve over Fp which if we

could produce it on demand, we could verify the primality of p

in O((log p)2+ε) bit operations. This was shown in [P, 1987] as

follows. There is a number m = 2kw in the Hasse interval Ip
with 2k > 2

√
p. Further, there is at least one elliptic curve

Ea,b(Fp) with order m. Via this curve (and generators for the

2-Sylow subgroup) one can prove that p is prime in

O((log p)2+ε) bit operations.
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So, there exist extremely short primality proofs. The rub is in

actually finding such a special curve. Naively, some sort of

Hensel iteration might be usable?

Unsolved problem: Given some prime p and integer m ∈ Ip,
quickly find some elliptic curve Ea,b(Fp) with order m.

(By results of Deuring and Waterhouse, such curves exist.)
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This problem is also of interest in cryptography. Many

cryptosystems and signature schemes rely on the intractability

of the discrete logarithm problem. (This problem: given a

cyclic group G = 〈g〉 and an element t ∈ G, find an integer n

with gn = t.)

The discrete logarithm problem is highly dependent on the

form in which the cyclic group is presented. For example, both

Z/100Z and F×101 are cyclic of order 100, but it is completely

trivial (via Euclid) to compute discrete logs in the former

group, and less trivial in the latter. (Both groups are generated

by the element 3. Try to find the discrete log of 17 in each

group and you will see what I am saying.)
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Discrete log cryptosystems were first proposed for groups in

the family F×q , where q is a prime power and where q − 1 has a

very large prime factor (say q − 1 is prime or twice a prime).

We have since developed sub-exponential discrete log

algorithms for such groups, causing cryptographers to use

expensively large values of q.
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Neal Koblitz Victor Miller
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An alternative (Koblitz, Miller): use elliptic curve groups

Ea,b(Fq) with order divisible by a very large prime, or better yet,

prime order. Here we essentially only have generic

meet-in-the-middle discrete log algorithms which take about
√
q

steps. So, because of our inability to come up with anything

better to solve discrete logs, elliptic curve cryptography is a

very viable and competitive platform.

To set up such a system, one needs a curve. Often it is nice to

have some special underlying prime p or prime power q, so as to

make the elliptic arithmetic somewhat more friendly (e.g., p is a

Mersenne prime or q is a power of 2). This then raises the

spectre of some of our unsolved problems: must there be a

prime in the Hasse interval? How do we find a curve with such

an order?
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Cryptographers happily ignore the problem of whether there are

primes in the Hasse interval, since heuristically (and so far in

practice) there are plenty of them. Finding one such curve can

then be accomplished via the (also unproved, but heuristic)

methods of Atkin, Morain, & Shallit.

Unsolved problem: Find a fast way to compute discrete

logarithms in an elliptic curve group, or prove that the problem

is as hard as computing discrete logs in a generic group.
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Dan Gordon

27



In the summer of 1986, just after he received his PhD at

UCSD, Dan Gordon also thought of the Atkin–Morain idea, but

was just a tad late. A disappointment for a new PhD, but he

did manage to salvage a new idea, elliptic pseudoprimes.

We have seen that if the prime p that splits in an imaginary

quadratic number field (and in fact, splits in the Hilbert class

field for the quadratic field), then we can say something about

certain elliptic curves over Fp. On the other hand, suppose we

have an elliptic curve Ea,b(Q) which has complex multiplication

by an order in the imaginary quadratic field Q(
√
D) and p is a

prime of good reduction which remains inert in the field. Then

#Ea,b(Fp) = p+ 1.
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This conclusion about certain primes then might be applied to

numbers n for which primality is unknown, so creating a test

which hopefully weeds out all or most composites. We call

such a procedure a probable prime test. For example,

if 2n ≡ 2 (mod n), we say n is a base-2 Fermat “probable

prime”. (A composite probable prime is called a pseudoprime.)
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How might we develop the CM fact above into a probable

prime test?

Gordon did this via division polynomials. Say we have an elliptic

curve Ea,b(Q). Let

ψ0 =, ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

with the recursion

ψ2k+1 = ψ3
kψk+2−ψ3

k+1ψk−1, 2yψ2k = ψk(ψk+2ψ
2
k−1−ψk−2ψ

2
k+1).

If p is a prime of good reduction and (x1, y1) ∈ Ea,b(Fp), with

y1 6≡ 0 (mod p), then for an integer m > 2, [m]P = O if and

only if ψm(x1, y1) ≡ 0 (mod p).
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Now suppose that E has CM by an order in Q(
√
D) (D < 0,

class number 1), P = (x1, y1) is a (rational) point on E of

infinite order, and n is an odd natural number coprime to the

discriminant of E, coprime to y1, and with (∆/n) = −1. Then

n is an elliptic probable prime with respect to E and P if

ψn+1(x1, y1) ≡ 0 (mod n). If n is also composite, it is an

elliptic pseudoprime with respect to E and P .

Are elliptic pseudoprimes rare with respect to primes?

Let NE,P (x) denote the number of elliptic pseudoprimes with

respect to E and P .
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A flurry of results:

Gordon (1989): Assuming GRH, NE,P (x) ≤
x log logx

(logx)2
. And for

certain E,P , NE,P >
√

logx/ log logx.

Miyamoto & Murty (1989): Unconditionally,

NE,P (x) ≤
x(log logx)7/2

(logx)3/2
.

Balasubramanian & Murty (1990): Unconditionally,

NE,P (x) ≤ x1−c
√

(log logx)/ logx.

Gordon & P (1991): Unconditionally,

NE,P (x) ≤ x1−(log log logx)/(3 log logx).
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R. Balasubramanian M. Ram Murty

33



There have been some recent papers, as by Siguna Müller

(2010), but the above counts remain unchanged since 1991.

Unsolved problem: Can one do better on the lower bound for

NE,P (x)?
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Here is a related problem recently considered by Joseph

Silverman and Katherine Stange. Given a non-singular elliptic

curve E over Q and a rational point P of infinite order, consider

the elliptic divisibility sequence Dn as defined above. Silverman

& Stange (2010) study the algebraic structure of the numbers

n with n | Dn, following the lead of Chris Smyth and others who

studied the analogous problem for the Fibonacci sequence and

for more general Lucas sequences. However elliptic divisibility

sequences do not obey a linear recurrence.

And even for linear recurrences, though there is a fairly large

literature on terms divisible by their subscripts, little seems to

have been discussed statistically.
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Joseph Silverman Katherine Stange
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In a 2011(!) preprint, González, Luca, P, & Shparlinski showed

that for a Lucas sequence (un) with characteristic polynomial

f(x) satisfying |f(0)| = 1, the number of integers n ∈ [1, x] with

n | un is bounded between xc1 and x1−c2
√

(log logx)/ logx. (The

upper bound holds without the requirement that |f(0)| = 1.

Avram Gottschlich has just recently achieved a similar upper

bound for the count of n ∈ [1, x] with n | Dn. He was able to

use somewhat similar techniques as in the above result for

Lucas sequences to show that the count is bounded above by a

function of the shape x1−c
√

(log logx)/ logx, but only under the

assumption that either the curve is CM or the GRH holds.

Unconditionally for non-CM curves he has the count at most

x/(logx)4/3+o(1) using a result of Serre (1981) on anomalous

primes (primes p with p | Dp).
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Avram Gottschlich Jean-Pierre Serre
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Ranks:

Our last topic concerns ranks of elliptic curves. It is known

after Mordell and Weil that the rank of the elliptic curve group

for an elliptic curve over a global field is finite. It is a folk

conjecture that this rank can be arbitrarily large.
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Over Q, the current record (Noam Elkies – 2006) has rank at

least 28:

y2 + xy + y = x3 − x2 − ax+ b

where

a =

20067762415575526585033208209338542750930230312178956502

and

b =

34481611795030556467032985690390720374855944359319180361

266008296291939448732243429.
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Over Fp(t), Igor Shafarevich and John Tate showed in 1967

that ranks of elliptic curves can be arbitrarily large.

Igor Shafarevich John Tate
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The curves exhibited by Shafarevich & Tate are isotrivial,

meaning the j-invariants are in Fp. In 2002, Douglas Ulmer

exhibited a family of curves with large rank over Fp(t) whose

j-invariants are not in Fp.

In particular, Ulmer considered curves over Fq in the family

Ed : y2 + xy = x3 − td,

where d divides some number of the form pn + 1 (where p is the

characteristic of Fq). Ulmer showed that the Birch &

Swinnerton-Dyer conjecture holds for such curves Ed, they are

not isotrivial, and he gave a formula for the rank, showing it is

unbounded.
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In the case of q = p and d = pn + 1, the rank of

y2 + xy = x3 − td over Fp(t) is within 4 of log(pd)/ log(d2). This

expression tends to infinity with n, and compares very nicely

with the universal upper bound of Brumer (1992):

log(pd)

log(d2)

(
1 +O

(
log p

log d

))
.
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Douglas Ulmer Armand Brumer
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In his paper, Ulmer gave the exact rank for curves in his family:

Let

Iq(d) =
∑
m|d

ϕ(m)

`q(m)
,

where `q(m) is the order of q in (Z/mZ)×. (Recall that

d | pn + 1 for some n so that d and its divisors are coprime to q,

a power of p.) From Ulmer’s exact formula, we have that

Iq(d)− 4 ≤ Rq(d) ≤ Iq(d),

where Rq(d) is the rank of Ed.

Brumer has shown that on average, ranks of elliptic curves over

Fq(t) are bounded above by 2.3. One might then ask about the

ranks of the general curves in Ulmer’s family.
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In 2010, P & Shparlinski showed a few statistical results about

the curves Ed. Fix the prime p. On average, the rank of Ed is

greater than dα, where α > 1/2 is a constant, and on average

smaller than d1−(log log log d)/(2 log log d).

(For the upper bound, we assume that d is restricted to

numbers which divide pn + 1 for some n.)

Also, we show that for each ε > 0, on a set of integers d of

asymptotic density 1 (depending on ε, p), the rank exceeds

(log d)(1/3−ε) log log log d.

We use the methods in a 1991 paper of Erdős, P, & Schmutz.
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Igor Shparlinski Eric Schmutz Henri Darmon
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The EPS paper deals with statistical properties of the

universal-exponent function λ(n), the order of the largest cyclic

subgroup of (Z/nZ)×.

It is hopeful that some improvements can be made here,

including achieving a tight formula for the normal order of the

rank for those d dividing pn + 1 for some n. There are other

curve families as well (such as some due to Darmon) that

might be attacked.
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THANK YOU!
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