Corrigendum: ‘On the average number of divisors of the Euler function’

By Florian Luca (Johannesburg) and Carl Pomerance (Hanover)

Sungjin Kim has brought to our attention that the proof of Lemma 3 in [2] begins with an incorrect identity. Though the stated lemma is undoubtedly correct, the proof seems elusive. The problem can be fixed by replacing that lemma with the following.

Lemma 1. Fix real numbers λ, C with $0 < \lambda < \frac{1}{10}$ and C large. For $R \leq x^\lambda$, $2 \leq M \leq (\log x)^C$, we have

$$\sum_{R/2 < r \leq R} \left| \sum_{q \leq x/rM} \left(\psi(x; qr, 1) - \frac{x}{\varphi(qr)} \right) \right| \ll_{C, \lambda} \frac{x \log M}{M}.$$

Proof. This follows from the special case for the residue class 1 of a result of Fiorilli [1, Theorem 2.1]. In particular, under the same hypotheses, Fiorilli’s theorem asserts that

$$\sum_{R/2 < r \leq R} \left| \sum_{q \leq x/rM} \left(\psi(x; qr, 1) - \frac{x}{\varphi(qr)} \right) - \frac{x}{rM} \mu(r, M) \right| \ll_{C, \epsilon, \lambda} \frac{x}{M^{743/538 - \epsilon}},$$

where

$$-2\mu(r, M) = \log M + \log 2\pi + 1 + \gamma + \sum_p \frac{\log p}{p(p-1)} + \sum_{p|r} \frac{\log p}{p}.$$

Since

$$\sum_{R/2 < r \leq R} \frac{x}{rM} |\mu(r, M)| \ll \frac{x \log M}{M},$$

the lemma follows. □

Received by the editors March 17, 2016.
In our paper, Lemma 3 is used in the proof of Lemma 5. Let
\[z = O(\log x/(\log \log x)^4), \quad y \in (e^{z(\log z)^2}, x], \]
let \(D_z(y) \) denote the set of integers \(d \leq y \) free of prime factors in \([1, z]\), and let \(\tau_z(n) \) denote the number of divisors of \(n \) in \(D_z(n) \). The goal is to prove that
\[
R_z(y) := \sum_{p \leq y} \tau_z(p - 1)
\]
is equal to \(c_1 y / \log z + O(y/(\log z)^2) \), where \(c_1 = e^{-\gamma} \), namely (21) in [2]. It suffices to show instead that
\[
R'_z(y) := \sum_{n \leq y} \tau_z(n - 1) \Lambda(n)
\]
is equal to \(c_1 y \log y / \log z + O(y \log y/(\log z)^2) \), since then (21) follows by partial summation. Indeed,
\[
R_z(y) = \frac{1}{\log y} \sum_{p \leq y} \tau_z(p - 1) \log p + \int_2^y \frac{1}{t(\log t)^2} \sum_{p \leq t} \tau_z(p - 1) \log p \, dt.
\]
Using the trivial estimate that the sum over \(p \leq t \) is \(O(t) \), we have
\[
R_z(y) = \frac{1}{\log y} R'_z(y) + O \left(\frac{y}{\log y} \right).
\]
Let \(P_z \) denote the product of the primes to \(z \), and let \(M = (\log y)^3 \), so that by inclusion-exclusion,
\[
R'_z(y) = \sum_{d \in D_z(y)} \psi(y; d, 1) = \sum_{r | P_z} \mu(r) \sum_{q \leq y/r} \psi(y; qr, 1)
= \sum_{r | P_z} \mu(r) \sum_{q \leq y/r \leq M} \psi(y; qr, 1) + \sum_{r | P_z} \mu(r) \sum_{y/r < q \leq y/r \leq M} \psi(y; qr, 1)
= R'_1 + R'_2, \text{ say.}
\]
By the Brun–Titchmarsh inequality we see that
\[
|R'_2| \ll \sum_{a \leq M} \sum_{r | P_z} \pi(y; ar, 1) \log y \ll y \sum_{a \leq M} \sum_{r | P_z} \frac{1}{\varphi(a) \varphi(r)} \ll y \log M \log z,
\]
which is negligible. Let \(R \leq P_z \). We have by Lemma 1 that
\[
\sum_{r | P_z, R/2 < r \leq R} \mu(r) \sum_{q \leq y/Mr} \psi(y; qr, 1) = \sum_{r | P_z, R/2 < r \leq R} \mu(r) \sum_{q \leq y/Mr} \frac{y}{\varphi(qr)} + O \left(\frac{y \log M}{M} \right).
\]

So, by summing dyadically, we have
\[
R'_1 = \sum_{r | P_z} \mu(r) \sum_{q \leq y/\varphi(qr)} \frac{y}{\varphi(qr)} + O \left(\frac{yz \log M}{M} \right).
\]

The argument in [2] now suffices to obtain (21).

Lemma 3 in [2] was also used to prove part (ii) of Lemma 6 there. In that result we have an integer \(u \leq (\log x)^{O(1)} \) free of prime factors in \([1, z]\), where now \(z = (\log x)^{1/2}/(\log \log x)^6\). The result gets an asymptotic for
\[
R_{u, z}(y) := \sum_{p \leq y, p \equiv 1 \pmod{u}} \tau_z(p - 1),
\]

where \(z < \log y/(\log \log y)^4\). We deal instead with
\[
R'_{u, z}(y) := \sum_{n \leq y, n \equiv 1 \pmod{u}} \tau_z(n - 1)\Lambda(n).
\]

As with \(R'_z(y) \) above, we have
\[
R'_{u, z}(y) = \sum_{d | D_{u, z}(y)} \psi(y; \lfloor u, d \rfloor, 1) = \sum_{r | P_z} \mu(r) \sum_{\substack{q \leq y/qr \leq M, \varphi(qr) \geq y/Mr}} \psi(y; qr, 1)
\]
\[
= \sum_{r | P_z} \mu(r) \sum_{\substack{q \leq y/qr \leq M, \varphi(qr) \geq y/Mr}} \psi(y; qr, 1)
\]
\[
= \sum_{r | P_z} \mu(r) \sum_{\substack{q \leq y/qr \leq M, \varphi(qr) \geq y/Mr}} \psi(y; qr, 1).
\]

The contribution when \(y/Mr < q \leq y \) is negligible (where \(M \) is as before), and since \(u \) has only \(O(1) \) divisors, we can use Lemma 1 to show that replacing \(\psi(y; usqr, 1) \) with \(y/\varphi(usqr) \) creates a negligible error. The rest of the argument is then routine.

We remark that Fiorilli [1] gives an application of his theorem to several Titchmarsh-divisor sums similar to \(R'_z(y) \) and \(R'_{u, z}(y) \).

We thank Sungjin Kim for bringing the difficulty to our attention and for suggesting [1] as a way around it.
References

Florian Luca
School of Mathematics
University of the Witwatersrand
Private Bag X3, Wits 2050, South Africa
email: florian.luca@wits.ac.za

Carl Pomerance
Mathematics Department,
Dartmouth College,
Hanover, NH 03755, USA
email: carl.pomerance@dartmouth.edu