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ABSTRACT. This survey paper discusses the role of two
elementary methods in getting good upper and lower bound
estimates for a variety of counting functions and for
computing maximal orders of certain arithmetic functions.
The upper bound method involves introducing a new
parameter, replacing a finite sum with an infinite sum
which may be rewritten as a product, and then specifying an
optimal choice for the new parameter. The lower bound
method involves using combinatorial counting arguments to
show that there are many numbers which can be built up with
small primes or, with an extra step, showing there are many
numbers built up with primes p such that all the primes
in p-1 are small. These methods will be illustrated in
the context of several attractive problems: the
distribution of numbers which have only small prime
factors, the maximal order for the "number of
factorizations" function, the maximal order for the number
of solutions m of ¢(m) = n where ¢ is Euler’s
function, and the distribution of pseudoprimes. The last
problem has practical applications for finding large random
primes.
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§1. INTRODUCTION.

The usual definition of elementary number theory is one of
exclusion. It does not use complex analysis, it does not
deal with algebraic number fields, it is not probabilistic
number theory, etc. Thus the title of this paper seems to
be a contradiction in terms. What I mean by "elementary
analytic number theory" is the use of elementary techniques
in areas whose greatest successes are dominated by analytic
methods. For example, the estimation of counting functions
is such an area. Its central result, the prime number
theorem, is proved in its sharpest form with analytic
methods. I would consider the various elementary proofs of
the prime number theorem as crowning achievements of
elementary analytic number theory. Another achievement can
be found in Brun’s sieve and, in general, combinatorial
sieve methods.

This paper will discuss, in the context of a few
specific problems, variations on two elementary themes.
One of these themes, sometimes referred to as "Rankin’s
method," can be used to obtain upper bounds, sometimes
quite sharp ones, for certain counting functions. The
other theme is concerned with lower bounds and has a
distinctly combinatorial flavor.

The following problems will be discussed:

1. The distribution of smooth numbers, that is, numbers
which have only small prime»factors.

2. The maximal order of the function f(n) which counts
the number of unordered factorizations of n .

3. The maximal order of the function N(n) which counts
the number of solutions m of ¢(m) = n, where ¢ is
Euler’s function.

4. The distribution of pseudoprimes.

Although this is primarily a survey paper, fairly
complete proofs will be given. It is possible that some
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of the material presented here would be of use in a
graduate number theory course. In my opinion, to see the
power and breadth of elementary methods better defines the
role of analytic methods in number theory.

For balance, the reader might also consult Tenenbaum
[26], a survey paper showing the role of analytic methods
with some of these problems.

§2. THE DISTRIBUTION OF SMOOTH NUMBERS.

Let ¢ (x,y) denote the number of natural numbers n < x ,
whose largest prime factor, P(n) , satisfies P(n) <y .
By convention, we let P(1) = 1 , so that if x,y 21 , we
have y(x,y) 2 1 The problem is to get good estimates
for v¢(x,y) for various ranges of x,y . If y is fixed
or tends to infinity very slowly in comparison to x ,
then ¥ (x,y) can be quite well approximated by counting
lattice points in the simplex

k
{(ay,...,ax): a3y 2 0, E: aj log pj < log x}
i=1

where pjg,...,px are the primes up to y . The best
results in this range are due to Ennola [6] and Specht
[25].

If we let

u = (log x)/log y ,
so that y = x1/U9 , then for fixed u , we have

(2.1) v(x,y) ~po(u)x ,

where p(u) , the Dickman-deBruijn function, is the
continuous solution of a certain differential-delay
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equation. In fact, it is now known from work of
Hildebrand, Maier, and Tenenbaum (see [15], [16], [18]),
that’ (2.1) holds even for vy
exp((loglog x)€) , ¢ > 5/3

The function p(u) decays to 0 quite rapidly as
It is known (deBruijn [3]) that

as small as

u - o .

p(u) = exp(-(1 + o(1))u log u) as

u -+ o .,

Thus from the work of Hildebrand, Maier, and Tenenbaum, we
have the following weaker result.

Theorem 2.1. Suppose ¢ > 0 is arbitrarily small, but

fixed. If y satisfies exp((log x)¢) <y <
exp((log x)1-¢€) then
¥(X,¥) = X © exp(-(1 + &(1))u log u)

uniformly as x - « , where u = (log x)/log y .

This section will be devoted to an elementary proof of
Theorem 2.1. The argument presented pre-dates the finer
results of [15], [16], [18].

‘We begin with an upper bound argument. The idea was
used in 1938 by Rankin [24] and was developed more fully
in deBruijn [4]. The upper bound implicit in Theorem 2.1
is actually proved for a wider range of y than is
indicated in the statement.

The key idea occurs in the very first step. If
then

c > o,

(2.2)  w(x,y) =2, 1<x¢ ¥ nC=xT[ (2-p©)71,
n<x P(n)<y psy
P(n)<y

where p denotes a prime. We thus replace a finite sum

with an infinite sum which has an Euler product. Our goal

is to estimate this product using prime number theory and
then choose c¢ optimally in (2.2).
Note that if ¢ > 1/2 + ¢ , then

(2.3) TT (2-p™©)~1 = exp|- > 1log (1-p~°)

p<y psy

L

-

= exp E: P~ + 0. (1)].
| Py

The final sum in (2.3) is easily estimated with the prime
number theorem: if 0 <c <1 and yl~C¢ > 2 , then

(2.4) > P = 1i(yl™C) (1 + o(

p<y

log y

Assembling (2.2)-(2.4) and taking the logarithm
suggests we look at the function

h(c) = c log x + 1li(yl™©)

where c 1/2 + ¢ <c<1, yl=¢ > 2
the derivative of h(c) and setting it equal to 0

that our optimal value of ¢ yl=c =

satisfies Taking

should satisfy
(1-c)log x . We shall choose a nearby value, namely
c=1- (log u)/log y .

Thus x© = u™Ux , 1i(y!™©) = o(u) , so that the assembly
of (2.2)-(2.4) gives

v(x,y) £ x - exp(-u log u + e(u))

i+¢

4
for (log x)2%€ <y < ¥ y l /(&'5"13%)

)) + 0(|log(l-c)]).
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For the lower bound argument, we shall assume that y is
in the range stated by the theorem. We first consider the
set M4 of integers m composed of [u]
distinct primes from the interval

not necessarily

(yl—l/log u v
Then every member m of i satisfies m < y(u]l < x .
Moreover,

(2.5)  w(x,y) 23 (G, ylitl/leg v

meld

Indeed, every number of the form mj < x where m € i
and P(j) < yl~1/log u P(mj) < y and various
pairs m,j account for distinct products mj .

Let z = yl-1/log u y = yl-2/log u, ug(m) =
(log(x/m))/log z .
have

satisfies

In the same way as we proved (2.5), we

X
w (mj Iw)

(2.6) W(g,z) 2. ol

J€EZ (m)
where ¢(m) is the set of products of
necessarily distinct primes from
meEM, JE Fg(m) , we have

[ug(m)] not

(w,2] . Now for any

X, _¥xm - z{Uo(m)}
M )
where { )

denotes the fractional part. Thus, since

EE 1/p = o(1) , we have
W<p<z

{ug (m) } "

w(ﬁg,w) > ¥ (z )

> [z{uo(m)}] — 5t [z(uo(m)}

w<p<z

/P]

35 Z{uo(m)}

uniformly for m € 4 , j € ¥(m) .
Putting this estimate in (2.6), we have

Z{uo(m)) _ z{uo(m)}

W(ﬁ,z) > 5 | (m) |
JEZ (m)
{ug(m)} 1 _ [ug(m) ]
>z TEETETTT (r(2z)-mw(W))

v

z{uo(m)}z[uo(m)l/((uo(m)+1)210g z)uo(m)

(2.7) (%/m) / ((ug (m)+1)210g z) 0™

where, for the last inequality, we used «(z) - =n(w) 2
z/(2log z) , which is valid for x (and hence z)
sufficiently large. The lower bound for |#(m)| used in
(2.7) comes from the combinatorial counting principal for
the number of ways of choosing k not necessarily
distinct things from a t-element set:
tk/k1 .

it is at least

We have m 2 z[U] | so that
log(x/z[u]) log x
2.8 = -
( ) O = Ug ()i log z log z [ul

u log u i u
logu-1 (ul < logu-1 il
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Since

loglog z £ loglog y = 0 (log u) ,
(2.8) implies there is some constant K, depending only
on the choice of ¢ with

ug(m)

1 < ((ug(m) + 1)2log 2z) < exp(Keu) 5

for all m € 4 . Thus from (2.7) we have

(2.9) w(i,z) >> £ exp(-Ku)

uniformly for all m € & .
Putting (2.9) in (2.5) we have

1
¥ (x,y) >> x - exp(-Kcu) E: ;
. mel

1 1
2 x - exp(-Kcu) Talt ¢ = ;)[u]
z<p<ly

(2.10) 2 X + exp(-u(log u + loglog u + 0, (1))) ,

since §;z<p3y 1/p ~ 1/log u . The lower bound for

E:meu 1/m used in (2.10) comes from the multinomial

theorem. Note that (2.10) completes the proof of the
theorem.

The combinatorial arguments used for the lower bound for
¥(x%,y) will be echoed in the following sections in
various ways. The argument just presented is a condensed

version of the proof in [5].

143

§3. HIGHLY FACTORABLE NUMBERS.

Let f(n) denote the number of unordered factorizations
of n into factors exceeding 1. By convention, we let
f(1) = 1 . Then, for example, f£(12) = 4 , since 12 has
the factorizations 12, 2-6, 3:4, 2-2-3,
number n
<n.

We say a natural
is highly factorable if f£f(n) > f(m) for all m
Thus highly factorable numbers are champion
numbers for the function f(n) just as Ramanujan’s highly
composite numbers are champion numbers for the divisor
function.

Let

F*(x) = max{f(n): n £ x})
and let
L(x) = exp(log x logloglog x/loglog xX) .

In this section we shall prove the following result.

Theorem 3.1. As x » o , F*(x) = x/L(x)1te(1)
As a consequence, we have that if n

factorable, then £(n) = n/L(n)lte(1) Theorem 3.1 is

the principal result of [5], which corrects a paper of

Oppenheim [19] where it is claimed that

F*(x) = x/L(x)2%o(1)

is highly

Let pj denote the i-th prime. It is clear that if n
is any natural number, then there is a number m < n such
. i : . S1aas &
that the prime factorization of m is p1 p2 500 pk

for some k , a; 2 ap 2...2 agx , and £(m) 2 £(n) .

Further, if n is sufficiently large, then the prime
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number theorem implies py < 2log n . Thus F#*(x) = f£(m)
for some m < x with P(m) < 2log x , for x sufficiently

large. In particular, for all large x and any c > 0 ,

(3. 1) F*(x) < > . ffn) < %© >
n<x P(n)<2log x
P(n)<2log x

f(n)/n€ .

This inequality is similar to (2.2), except that we cannot
now replace the last sum with an Euler product since the
function f(n) is not multiplicative. However, a
generalization of a formula of MacMahon [17] gives us
something very similar:

(3.2) > f(n)/n~C = T (1-m~C)-1
P(n)<2log x P(m)<2log x
m>1

which can be easily seen by replacing (1-m~C)-1 with
1+mC+m2 +,,. and multiplying out the product. It
is easy to show that the right side of (3.2) is convergent
for ¢ > 0 and so the left side is as well.

Assuming c 2 1/2 + ¢ , we have from (3.1) and (3.2)
that

F*(x) < x© 1T
P(m)<2log x
m>1

(1-m~C) -1

<<, %% exp{ > . ]

P(m)<2log x

= exp[ T

(r-p=%p=t
p<2log x
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(3.3) = xC exp exp >
pP<2log x

P~ + 0 (1)

Using (2.4) for §:pszlog x P”¢ and choosing

¢ =1 - (logloglog x)/loglog x , we have xC = X/L(x) and

z:pszlog x P~¢ = 0((loglog x)/logloglog x) ;, So that (3.3)

implies F*(x) < x/L(x)1te(1)
The proof of the lower bound is not only similar to the

proof of the lower bound in Theorem 2.1, but it actually
uses this theorem as well. ILet ¢ = loglog x and let

2

I
F=({f: 1L < f<e + P(f) < log x} .

From Theorem 2.1 it follows that

19| = ebz-(l+o(l))L log ¢

Let k = [(log x)/(loglog x)?2)] Note that if

) 2
1, f3,...,fx €5 , then n = £1f,...F < e < x . Not

only is this integer n < x , but n has been endowed with

the factorization f1f5...fx and P(n) < log X . We thus
have

2.
> £(n) 2 = g1k = L K= (1+e(1))2 log ¢)
k! k!
n<x
(3.4) P(n)<log x
= x/L(x) 1+o- (1)
since there are at least %T |%|X  choices of e .

k-tuples drawn from & .
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From (3.4) we derive

F*(x) 2 max{f(n): n < x, P(n) < log x})

(3.5) > y(x,1og x)"1 37 £(n)
n<x
P(n)<log x

> x L(x)~1te(1) y(x,log x)-1 .

Thus to finish the proof of Theorem 3.1, we have only to
note that

(3.6) ¥(x,log x) = L(x)>(1) ,

since putting (3.6) into (3.5) gives F*(x) 2 x/L(x)1lte(1),
In fact the lattice point argument mentioned in the first
paragraph of section 2 can be used to show ¢(x,log x) =
exp(0(log x/loglog x)) which implies (3.6). The same
estimate can be seen from (2.2) by choosing c = 1/loglog x
and estimating the product on the right of (2.2) carefully.
From a result of Erdsés [10], we have the finer estimate

¥(x,log x) = 4(1+s(1)) (log x)/loglog x ,

which also can be established by elementary methods.

§4. POPULAR VALUES OF EULER’S FUNCTION.

Some numbers n occur many times as a value of Euler’s
function ¢ . For example 24 has 10 pre-images under o
namely 35, 39, 45, 52, 56, 70, 72, 78, 84, 90. In a
remarkable paper from 1935, Erdés [7] showed among other
results, that there is a constant ¢ > 0 such that

14
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N(n) > n® for infinitely many n , where N(n) is the
number of m with ¢(m) = n . Moreover, Erdés
conjectured that ¢ can be taken arbitrarily close to 1.
In this section we shall discuss this problem.

Let

N#*(x) = max{N(n): n £ x} .

By an argument very similar to the upper bound in Theorem
3.1, we have the following result which first appeared in

[20].

Theorem 4.1.

As x > o , N*(x) < x/L(x)1lte(1)

Proof. Let n < x be such that N(n) = N*(x) . If x
is sufficiently large and if e¢(m) = n , then m < z: =

2x¥x loglog x .
see Hardy and
c >0,

N(n)

(4.1)

We now assume

This follows from the prime number theorem -
Wright [14], Theorem 328. Thus for any

= > 1< 2%>mC < z© > m~¢
m<z ¢ (m)=n pim=p-1|n
® (m)=n

that c 2 1/2 + ¢ , so that (4.1) implies

pP-1|n d|n

N(n) <<, z€ exp[ >0 p‘c} < z€ exp[E: d'c]

(4.2)

pin

< z€ exp[TT (1—p'c)'1}
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= zC expexp[z P~ + 0, (l)] o
pin

As in the argument prior to (3.1), we have

2 P& > pc

Pin p<2log x

for x sufficiently large. Putting this estimate into
(4.2) we get almost exactly (3.3). Choosing the same
value of ¢ as in section 3, namely

¢ =1 - (logloglog x)/loglog x , thus gives N=*(x) <
x/L(x)1te-(1) which proves the theorem.

The same themes as in the preceding sections appear to
be working very well for N*(x) . However attempting to
prove a lower bound, we run into a large hurdle. To prove
there is some n with N(n) very large we should like to
show there are many m with P(e(m)) small, so that o
maps a large set to a small set. But for P(e(m)) to be
small, we shall need P(p-1) small for each prime factor
P of m . Suppose we knew the following:

Hypothesis 4.2. The number M(x) of primes p < x with

1/2
P(p-1) < e(lOg %) /

1/2
x,e(log x) 1/

satisfies M(x) >>

¥ ( )/log x.
Then we could prove N*(x) = x/L(x)1l+e(1) In fact this

follows from a weaker hypothesis as we shall now see.
Note that Theorem 2.1 implies
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1/2
w(x,e(log X) )

= x/exp((% + a(l)) (log x)l/2 loglog x) .

Hypothesis 4.3. With M(x) defined as in Hypothesis 4.2,
we have

M(x) = x/exp((% + o(1)) (log x)l/2 loglog x) .

Theorem 4.4. Assuming Hypothesis 4.3, we have N*(x) =
x/L(x) 1+0 (1)

Proof. We have already seen in Theorem 4.1 that we have
N*(x) < x/L(x)1lte(1) unconditionally. We now show the
reverse inequality. Let £ = loglog x as in the proof of
Theorem 3.1, and let

2

? = {p prime: p < eL , P(p-1) £ log x)

Then from Hypothesis 4.3, we have

1] = eLZ-(1+a(1))¢ log ¢

Thus ? 1is entirely analogous to the set % constructed
in the proof of Theorem 3.1. Let k = [(log x)/

(loglog x)2] . Instead of choosing unordered k-tuples
from ¢ , we choose k-element subsets. The number of
these subsets is

[lil] . [1%;]k _ xk ek(Lz—(1+a(1))L log ¢)
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(4.3) , = x/L(x)1te(1)

For each k-element subset, we multiply these primes
together forming an integer m < x with the property that

P(¢(m)) < log x . Thus ¢ maps a set of size [Iil] to

a set of size y(x,log x) . From (4.3) and (3.6), we have
that some n counted by ¢(x,log x) has at least
x/L(x)1%*(1) pre-images under ¢ , that is, N*(x) >
x/L(X) 1+o (1)

Although Hypotheses 4.2 and 4.3 appear hopeless to prove
at this time, we can salvage something.

Definition 4.5. Let E denote the supremum of the set of
« € [0,1) for which there is some ¢, > 0 with the
property that the number of primes p < x with P(p-1) <
x1-%  exceeds cy¥X/log x for all x 2 2 .

In [7], Erdés used Brun’s method to show that E > 0 and
conjectured that E = 1 . Wooldridge [27] used Selberg’s
sieve to show E 2 3-2/2 = .17157... . In [20],
Bombieri’s theorem and some results of Hooley and Iwaniec
concerning the Brun-Titchmarsh theorem on average are used
to show that E > 5/9 . Just this year, Friedlander [13]
used his extension of Bombieri’s theorem with Bombieri and
Iwaniec to show E > 1 - (2/e)~1 = .69673... . Other
relevant papers on the subject are Balog [1] and Fouvry
and Grupp [12].

Theorem 4.6. As x > o we have N#*(x) 2 xE+te (1)
Proof. Fix an arbitrary ¢ with 0 < ¢ < E and let

B=(1L-E+¢)"l ., Let ? be the set of primes
P < (log x)# with P(p-1) < log x . From the definition
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of E , we have
(4.4) [?| >> (log x)8/loglog x .

Let u = [(log x)/(B loglog x)] and let & be the set of
integers composed of u distinct primes from ? . Then
each m € 4 satisfies m < x and P(e(m)) < log x .
Moreover, from (4.4),

u u

4l = ['T'J 2 [_?"]'u = x(B-1)/8+o(1)

Since ¢ maps 4 to a set of size ¥(x,log x) = xo(1)
(see (3.6)), there is some n counted by ¥(x,log x)

with x(B-1)/B+6(1) pre-images under ¢ . But
(8 - 1)/B = E - ¢ v
so that N#*(x) > xE“€+o(l) | gince ¢ can be arbitrarily

small we have our theoren.

Theorem 4.6 was first proved by Erdés in [7].

§ 5. THE DISTRIBUTION OF PSEUDOPRIMES.

Since Fermat we have known that if n is prime and nta,
then an-1 1 (mod n). This congruence can sometimes
hold when n is composite. For example, it holds for all
n when a 1 , it holds for n = 341 = 11-31 when a = 2,
and it holds for n =91 when a=3. If n is a
composite natural number and aP~1 = 1 (mod n), then n
is said to be a pseudoprime to the base a . Let P, (%)
denote the number of base a pseudoprimes n < x .

One might conjecture that for a fixed a # 1 , the base
a pseudoprimes are rare compared with primes, that is,
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that Py(x) = o(n(x)). This result was first proved by
Erdés in [8]. The strongest result of this type is found
in [21] : if a # +1 , there is an Xp(a) such that

(5-1)  Pa(x%) < x/L(x)1/2 for all x > xg(a) ,

with L(x) the same as in sections 3 and 4. This proof
is a bit technical and the theorem is probably not best

possible. I conjecture that for every a with |a| > 1

we have P,(x) = x/L(x) 1te (1)

It will probably be more illuminating to work through
the proof of a similar theorem that gives a stronger
result for a more restrictive set of numbers. Some
composite numbers n , such as 561, 1105, and 1729, have
the property that they are "absolute pPseudoprimes," that
is, they are pseudoprimes to every base to which they are
coprime. These numbers are also called Carmichael
numbers.

Let X (n) denote the maximal order for an element in th
multiplicative group (Z/n)* . By the theorem on the
primitive root, A (p?)-= pa~l(p - 1) for an odd prime p
or for p2 = 2 or 4 . Also A(23) = 2372 for g > 3
Further, from the Chinese remainder theorem, it is easy to
see that i(n) = lem (X (p2): p?|n) It is also easy to
see that a*(M) =1 (mod n) for all a e (Z/n)* . Thus
we have the following simple criterion: the composite
integer n is a carmichael number if and only if
A(n)|n -1 .

In 1956, Erdés [9] proved that C(x)
Carmichael numbers up to x

; the number of
, satisfies cC(x) < x/L(x)C
for some ¢ > 0 and x large. This was improved to

¢ =1+o0(1) in [23]. We now give a simplified proof.

Theorem 5.1. As x - o , C(x) < x/L(x)1lte(1)

Proof. If d is a natural number, we ask how many
Carmichael numbers n < x are multiples of d . If d|n,

153

then X (d)|x(n) , so that the condition A(n)|n -1
implies A(d)|n - 1 . Thus the number C(q) (x) of
Carmichael numbers n < x with d|n is at most the
number of composite numbers n < x with

(5.2) n =0 (mod 4), n 1 (mod x(d)) .

1]

Thus for C(d)(x) to be positive, it is necessary that
(d,2(d)) =1 . We thus have by the Chinese remainder
theorem:

X
(5.3) C(d) (x) <1 + [d)\(d)] 5

Further, if 4 = p is prime, then the solution n = p of
(5.2) should not be counted since it is not composite.
Thus for p prime, we have

X
(5.4) C(p) (x) < [m]

From (5.4) we quickly see that we can restrict our
attention to Carmichael numbers n < x satisfying

P(n) < L(x) , for the number of other Carmichael numbers
up to x is at most

E: 1

m = o(x/L(x)).

Z C(P) (x) < x
p>L(x) p>L(x)

Thus it will be sufficient to show that

C’/(x) < x/L(x)1+°(x) where C’(x) is the number of
Carmichael numbers n with X/L(x) < n £ x and

P(n) < L(x) . If n is counted by C’(x) , then n has a
divisor d satisfying
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(5.5) x/L(x)2 < d € x/L(x) .

Indeed, n has a divisor d satisfying d > x/L(x)2 ,
namely n itself. But since n > x/L(x) and

P(n) < L(x) , the least such divisor d must also satisfy

d < x/L(x) .
Thus by (5.3),

X
dx(d)])'

er(xy < 2,7 +
d

where 2:’ denotes a sum over d satisfying (5.5). We

thus have

X 1
c’(x) £ - +x >
BEL o e
4 ) 1 1
(5.6) = fxo3 X o Ly
Bx) n<h(x)2 ® 2 (d)=m ¢

We now treat the inner sum in (5.6) by partial summation:

(5-73 3.’ % = bix) T 1

A (d)=m o A (d)=m
x/L(x) 1 5
+ Ix/L(x)z 2 x%&)=m 1 dt .
ast

We thus shall be interested in obtaining an upper bound
for A(t,m) , the number of d <t with A(d) =m .
Lemma 5.2. As t - o , A(t,m) < t/L(t)1*>(1) uniformly
for all m .
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Before we prove the lemma, we show how the theorem
follows from it. From (5.7) and the lemma,
1 L(x) X x/L(x) 1
Z - +
23 d = b A(L(x) /M) Ix/L(x)z 2 A(t,m)dt

2 (d)=nm
< L(x)-l+6(1)

uniformly for all m . Putting this in (5.6) immediately
gives C’(x) < x/L(x)1+“(1) , which as we have noted, is
sufficient for the theorem.

To prove the lemma we resort to the trick used in the
previous sections. Note that we may assume m < t , for
otherwise A(t,m) = 0 . We have for any ¢ > 0 ,

A(t,m) <t > a€ < t© > a-c
A (d)=m pld=p-1|m

=t I a-pot.
p-1|m

We now have an expression that is essentially the same as
the right side of (4.1), so that the lemma follows from
the rest of the proof of Theorem 4.1.

Although we still do not know if there are infinitely
many Carmichael numbers, probably Theorem 5.1 is close to
best possible. An elaboration of a heuristic argument
given by Erdés in [9], suggests that C(x) 2 x/L(x)1+“(1).
This argument is very similar to the proof of Theorem 4.4;
we now sketch it.

Let P’(n) denote the largest prime power factor of n.
If M’(x) is the number of primes p < x with P’(p - 1)

1/2
< e(1°g %) / (log x)l/2 , We conjecture, analogously to
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Hypothesis 4.3, that
1
(5.8) M’ (x) = x/exp(( + o(1)) (log x)1/210glog x) .

It is not hard to show from Theorem 2.1 that the number of

§ log x)1/2
n < x with P’(n) < alto9 %} /(log x)1/2 gsatisfies the

same estimate, so that (5.8) is perhaps a reasonable
conjecture.

As in the two previous sections, let <+ = loglog x .
Let A = A(x) denote the least common multiple of the
integers up to (log x)/loglog x (=eL/L) . If & 1is the
set of products of [(log X)/ (loglog x)z] distinct primes

; 22
P with log x < p < e and p - 1|A , then from (5.8)
and the argument in section 4 (see (4.3)) we have

4] > x/L(x)1*e(1)

Note that every member m of & is composite, m < x ,
(m,A) = 1, and A(m) |A .

We now make a second heuristic assumption. We
conjecture that the members of & are approximately
uniformly distributed among the residue classes mod A
that are coprime to A . If SO0, we would expect about
|#]|/A members m of i to satisfy m =1 (mod A) . But

A < exp(0(log x/loglog x)) = L(x)%(1)

SO we are conjecturing there are at least x/L(x) 1te (1)
members m of M with m = 1 (mod A). But since m e g
implies i (m)|A , each such m is a Carmichael number.

It is possible to show there are infinitely many
pseudoprimes to the base a for any fixed a . The best
result of this sort is in [22]: for any fixed a % 0
E/ (E+1)+o (1)

14

Pa(x) 2 exp ((log x) ), where E is given in

157

Definition 4.5. Thus, for example, using Friedlander’s
result that E > 1 - (2/e)~l , we have

Py (x) 2 exp((log x)85/2°7) for x 2 xg

Again, the conjecture is that for each a # 0,1 we have
Py(x) = x/L(x)1%e(1)

Better results can be proved if we average over a . 1In
[11], it is shown that

(5.9) E+to(1) 1 s
l1<asx

P, (x) < x/L(x)1te(1)

The upper bound proof is similar to the proof of Theorem
5.1 and the lower bound proof is similar to the proof of
Theorem 4.6. Assuming Hypothesis 4.3 it is possible to
show that the upper bound is sharp.

Finally we note that the upper bound in (5.9) actually
has a "real world" application, as noted in [2]. Namely,
if you would like to quickly find a random prime number
p < x , you might try the following random algorithm.
Choose a random number n < x and a random integer a with
1 <a<n. Keep choosing such random pairs until one is
found that satisfies a1 = 1 (mod n) . The expected
number of choices before a good pair is found is 1log x ,
by the prime number theorem and (5.9). The probability
that the number n found in this fashion is composite is
at most L(x)'1+“(1) , by (5.9). Although not proved
prime, the number n probably is prime, and might be used
as such in a practical application. (If one wants a
procedure which has a higher probability that the output
n is prime, one can further subject n to a series of
"strong" pseudoprime tests - see [2].)

The expression "o (1)" that appears in the upper bound in
(5.9) detracts from (5.9) as a practical theorem. However
the methods used to prove the upper bound in (5.9) can be
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made effective and would be an interesting subject for

further research. Some preliminary results in this
direction have been found by Kim Su Hee in her upcoming
master’s thesis at the University of Georgia.
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