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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8,

s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

(In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.)
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And he noticed that

s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers.
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An aliquot sequence continues to iterate the function s:

1→ 0

any prime p→ 1 . . .

4→ 3 . . .

6→ 6 . . .

9→ 4 . . .

10→ 8→ 7 . . .

12→ 16→ 15→ 9 . . .

14→ 10 . . .

18→ 21→ 1 . . .

20→ 22→ 14 . . .

24→ 36→ 55→ 17 . . .

25→ 6 . . .

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15→ 9 . . .

220→ 284→ 220 . . .
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We see that some aliquot sequences enter a fixed point or a

longer cycle, and some terminate at 0.

The Catalan–Dickson conjecture: This always happens.

That is, every aliquot sequence is bounded.

The Guy–Selfridge counter-conjecture: Not so fast! Many

aliquot sequences are unbounded.
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For starters up to 100 every aliquot sequence is bounded, the

longest being the one starting at 30, having length 16 and

maximum term 259.

This record is soon broken at 102, where the length is 19 and

the maximum term is 759.

Here is the 120 iteration:

120, 240, 504, 1056, 1968, 3240, 7650, 14112, 32571, 27333,

12161, 1, 0

The length is just 13, but note that the maximum term is

32751.

This brings us to the 138 iteration on the next slide.
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138,150,222,234,312,528,960,2088,3762,5598,6570,10746,13254,13830,
19434,20886,21606,25098,26742,26754,40446,63234,77406,110754,
171486,253458,295740,647748,1077612,1467588,1956812,2109796,
1889486,953914,668966,353578,176792,254128,308832,502104,753216,
1240176,2422288,2697920,3727264,3655076,2760844,2100740,2310856,
2455544,3212776,3751064,3282196,2723020,3035684,2299240,2988440,
5297320,8325080,11222920,15359480,19199440,28875608,25266172,
19406148,26552604,40541052,54202884,72270540,147793668,228408732,
348957876,508132204,404465636,303708376,290504024,312058216,
294959384,290622016,286081174,151737434,75868720,108199856,
101437396,76247552,76099654,42387146,21679318,12752594,7278382,
3660794,1855066,927536,932464,1013592,1546008,2425752,5084088,
8436192,13709064,20563656,33082104,57142536,99483384,245978376,
487384824,745600776,1118401224,1677601896,2538372504,4119772776,
8030724504,14097017496,21148436904,40381357656,60572036544,
100039354704,179931895322,94685963278,51399021218,28358080762,
18046051430,17396081338,8698040672,8426226964,6319670230,
5422685354,3217383766,1739126474,996366646,636221402,318217798,
195756362,101900794,54202694,49799866,24930374,17971642,11130830,
8904682,4913018,3126502,1574810,1473382,736694,541162,312470,
249994,127286,69898,34952,34708,26038,13994,7000,11720,14740,
19532,16588,18692,14026,7016,6154,3674,2374,1190,1402,704,820,
944,916,694,350,394,200,265,59,1,0 7



The 138 iteration has length 179 with maximum term

179,931,895,322.

We can look for patterns or clues.

One thing to note: The numbers are all even till we get to

almost the end, when they turn odd for the final plunge. (Easy

Fact: s(n) ≡ n (mod 2) unless n is a square or twice a square.)

Also: The sequence tends to stay monotonic for long stretches.

Here’s a plot (of the base-10 logs):
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Actually, the first number in doubt for whether it terminates,

enters a cycle, or diverges is 276. This has been computed for

2140 iterations, where the current value has 213 decimal digits

and is of the form 6n, where n is composite and has no small

prime factors. Here is the plot: (from

https://members.loria.fr/PZimmermann/records/aliquot.html)
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(Unlike many increasing graphs we see these days, I can assure

you that aliquot sequences are totally benign!)

Notice that 276 is the double of 138. What if we keep

doubling?
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s3(276) = 1104

15



16



17



A fairly wild one!
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This one starts at 17,490 and eventually enters a 4-cycle.
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The EKG graph!

It starts at 2856 and enters Poulet’s 28-cycle with min value

14,316. This cycle was discovered in 1918, when Richard was

two. (Graph from www.aliquot.de/aliquote.htm#programs.)
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Are there any theorems? Well, here’s an easy one:

1

x

∑
n≤x

s(n)

n
∼ ζ(2)− 1, x→∞.

Since ζ(2)− 1 = π2/6− 1 ≈ 0.6449, perhaps this lends support

to Catalan–Dickson.

But Guy–Selfrdige would grant you that odd numbers would

tend to give bounded aliquot sequences: what’s the average

over even numbers? It is

1

x/2

∑
2n≤x

s(2n)

2n
∼

5

4
ζ(2)− 1, x→∞,

and 5ζ(2)/4− 1 ≈ 1.0562.
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Well, Catalan–Dickson might argue that the graphs we’ve

seen plot the log of the current iteration value and have

approximately piecewise linear behavior. On such intervals we

should be looking at the geometric mean rather than the

arithmetic mean.

Bosma & Kane (2012) did this for starting values: Over odd

n ≤ x, the geometric mean is o(1) as x→∞, and over even

n ≤ x it is ∼ eλ, where λ < −0.03.

They call λ the “aliquot constant” and the fact that it is

negative, that is, eλ < 1, they say lends support to

Catalan–Dickson.

22



In 2017, I computed λ to higher precision, it is

−0.03325948 . . . . I also computed the geometric mean over

multiples of 4, it is ∼ eλ4, where λ4 = 0.174776. Since this is

> 1, perhaps Guy–Selfridge holds for many multiples of 4.
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Perhaps the flaw in this thinking: Does the ratio s(n)/n have
any correlation with the ratio s(s(n))/s(n), or if it does, what
about higher iterates?

Lenstra (1975) showed that for every k there is an increasing
aliquot sequence of length k, and the next year, Erdős showed
that this commonly occurs.

Note that the inequality n < s(n) is the definition of an
abundant number, a concept that goes back to the first
century in a book of Nicomachus. Davenport proved that
they have a positive density ∆, and the current record, of
Kobayashi, is that ∆ to 4 decimal places is 0.2476.

Erdős (1976): For each fixed k, but for a set of numbers of
asymptotic density 0, if s(n) > n, then the aliquot sequence
starting at n increases for k terms.
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In the same paper, Erdős claimed the same is true for s(n) < n;

that is if the sequence decreases at n, it almost surely continues

to decrease for k − 1 additional terms. However, he later

withdrew his claim of a proof, though it seems likely to be true.

In 1990, Erdős, Granville, P, & Spiro showed it to be true if

k = 2. That is, if s(n) < n, then almost surely s(s(n)) < s(n).

They also conditionally proved the full statement for decreasing

aliquot sequences assuming the following conjecture.

Conjecture: If A is a set of integers of asymptotic density 0,

then s−1(A) also has asymptotic density 0.
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Note that there is a set of asymptotic density 0 such that s(A)

has asymptotic density 1/2. This is the set of “almost primes”

pq, where p, q are primes. The fact that the set of s(pq) has

density 1/2 follows from what’s known about Goldbach’s

conjecture. (We’ll revisit this situation near the end of the

talk.)

Using these kinds of thoughts, it’s not hard to prove that for

each k there exists a decreasing aliquot sequence of length k.
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Towards the issue of correlating behavior at higher iterates with

what happens earlier, in 2018 I worked out the geometric mean

of s(s(n))/s(n) over even n: It is asymptotically the same as for

s(n)/n.

In Chum, Guy, Jacobson, & Mosunov (2018) numerical

experiments were performed to test the geometric mean on

average for sk(n)/sk−1(n) for even n with sk(n) > 0 for k ≤ 10:
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Another extensive numerical experiment was performed by
Bosma, 2018. For each n < 106 he computed the aliquot
sequence starting at n until it either terminated at 0 or a cycle,
merged with the sequence of a smaller n, or if a term exceeded
1099.

Here are some of his extensive stats:

Every odd number’s sequence with a term exceeding 1099 had
already merged with a smaller, even number’s sequence, and
there were just 793 of these.

About 1/3 of the even numbers < 106 had an s-iterate larger
than 1099. More specifically, there are 169,548 such even
numbers. (After mergers, there are just 9,527 distinct such
sequences.)
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Another statistical angle (from an asymptotic perspective) is in

a recent paper with Pollack, 2016. Here, among other

problems, we consider “aliquot reversals”. These are those

exceptional numbers n where n, s(n), s(s(n)) is not monotone.

We dedicated this paper to Richard on his 99th birthday:
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Let’s assume for the sake of argument that the higher iterates

of s are independent of earlier behavior. How likely is it for the

sequence to maintain parity, i.e., stay even or stay odd? Well,

it changes parity whenever a square or the double of a square is

hit, and the chance for a random n to be of this form is

proportional to 1/
√
n. Yes, certainly a small chance, especially

when n has hundreds of digits. And if the sequence is growing

geometrically, then this chance decreases geometrically.

However, infinity is a long way off! In the journey, once we

reach high numbers, might we never see a parity switch?

Yes, this is a reasonable assumption, since the product of

1− 1/
√

2n (assuming the sequence is growing like 2n)

converges quickly to a positive constant, with the tail product

exponentially close to 1.
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OK, it may indeed be reasonable to assume constant parity for

an aliquot sequence once it reaches high numbers.

What about divisibility by other small primes? For example, 3.

If 6 | n and n > 6, then s(n) > n. Does 3 persist? Conversely, if

3 - n, should this persist for s(n)?
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The answer is yes, sort of. The issue is if 3 | σ(n), where

σ(n) = s(n) + n. If 3 | σ(n), then 3 | n if and only if 3 | s(n).

But why should 3 | σ(n)? A “normal” n has about log logn

prime factors, a result of Hardy & Ramanujan, most of which

will generally be just to the first power. The number of these

primes that are 2 (mod 3) normally is about 1
2 log logn. But if

p ≡ 2 (mod 3) is prime, then 3 | p+ 1 = σ(p). Thus, normally,

3k | σ(n), where k ≈ 1
2 log logn.

Quantifying this somewhat, the probability that 3 - σ(n) for a

random n decays to 0 like 1/
√

logn. Now this is small, but

again, the journey to infinity is long, and we really ought to

expect to see 3 - σ(n) occur infinitely often. So, when 3 occurs,

it should do so for a long stretch, but not forever.
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This analysis is interrupted a bit by parity again. For example,

suppose that n ≡ 2 (mod 4). Then we automatically have

3 | σ(n). But should we expect the residue class mod 4 to

persevere?

A similar argument for there usually to be a high power of 3

dividing σ(n) says that usually a high power of 2 divides σ(n),

and in fact, the probability that σ(n) 6≡ 0 (mod 4) (the

condition that would block 2 (mod 4) from continuing) is

proportional to 1/logn.

But, now here’s where it gets complicated, what if both 2 and

3 appear in n to exactly the first power. Then we are

guaranteed that s(n) ≡ 2 (mod 4) and that s(n) ≡ 0 (mod 3).

What might change is that possibly 32 | s(n).
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Again, working out all of these angles and similar scenarios

convinced Guy & Selfridge that there will indeed be aliquot

sequences that escape to infinity, and they may be right.



Say a number n is sociable if it is in an aliquot cycle, that is,
sk(n) = n for some k. These include the perfect numbers (51
are known), amicable numbers (more than 1.2× 109 pairs are
known), length-4 cycles (5398 are known), and a few sporadic
longer cycles (1 each of lengths 5, 9, and 28, 5 of length 6,
and 4 of length 8).

It’s known that the number of integers contained in all cycles
contained in [1, x] is o(x) as x→∞ (with Kobayashi &
Pollack).

Unsolved: Are there infinitely many cycles?

Unsolved: Are there any cycles of length 3?

Unsolved: Do the sociable numbers have asymptotic density 0?
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I’d like to close with the problem of “untouchable” numbers,
also called “nonaliquot” numbers. These are positive integers
that are not values of s.

Unsolved: The only odd untouchable number is 5.

Conditional proof. First note that s(2) = 1, s(4) = 3, s(8) = 7,
and there is no solution to s(n) = 5. Suppose the even number
2k ≥ 8 is the sum of two different primes p, q. Then
s(pq) = p+ q + 1 = 2k + 1. Thus, if every even number at least
8 is the sum of two distinct primes, then every odd number at
least 9 is a value of s. �

Note that from known partial results on Goldbach’s conjecture,
the set of even numbers that are not the sum of two distinct
primes has asymptotic density 0.
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What about even values of s? Erdős, 1973, showed that a

positive proportion of even numbers are untouchable, i.e., not

values of s. In 2015, Luca and I showed that a positive

proportion of even numbers are values of s. Unsolved: The set

of untouchable numbers has an asymptotic density.

In that 2016 paper with Pollack dedicated to Richard on his

99th birthday, we gave a heuristic argument that the density of

untouchable numbers exists and is ≈ 0.1718. The proportion of

them to 1010 is ≈ 0.1682. This calculation was carried much

further, to 240, in Chum, Guy, Jacobson, & Mosunov, and

the proportion of untouchables to this level is ≈ 0.1712.

Unsolved: Prove the conjecture. What can be said about even

numbers of the form s(s(n))? (even computationally)
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One might question whether the topic of aliquot sequences is

“good” mathematics.

A famous number theorist once opined:

“There are very many old problems in arithmetic whose

interest is practically nil, e.g. the existence of odd

perfect numbers, problems about the iteration of

numerical functions, the existence of infinitely many

Fermat primes 22n + 1, etc.”
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But in my mind, the answer is unquestionably yes, the study of

aliquot sequences has been quite worthwhile! Not only does the

topic have an ancient pedigree, going back to Pythagoras and

many other historical figures, it has helped to spur algorithms

for primality testing and factoring, it has helped to spur the

study of multiplicative functions, and also probabilistic number

theory. It may be the first dynamical system ever studied.

The high arbiters of taste may disagree, but meanwhile, the

rest of us, with Richard Guy in our midst holding the banner

high, carry on.

Thank You
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