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Abstract. In 1973, Erdős proved that a positive proportion of numbers are not of the
form σ(n) − n, the sum of the proper divisors of n. We prove the analogous result where
σ is replaced with the sum-of-unitary-divisors function σ∗ (which sums divisors d of n such
that (d, n/d) = 1), thus solving a problem of te Riele from 1976. We also describe a fast
algorithm for enumerating numbers not in the form σ(n)−n, σ∗(n)−n, and n−ϕ(n), where
ϕ is Euler’s function.

1. Introduction

If f(n) is an arithmetic function with nonnegative integral values it is interesting to con-
sider Vf (x), the number of integers 0 ≤ m ≤ x for which f(n) = m has a solution. That
is, one might consider the distribution of the image of f within the nonnegative integers.
For some functions f(n) this is easy, such as the function f(n) = n, where Vf (x) = ⌊x⌋, or
f(n) = n2, where Vf(x) = ⌊√x⌋. For f(n) = ϕ(n), Euler’s ϕ-function, it was proved by
Erdős [Erd35] in 1935 that Vϕ(x) = x/(log x)1+o(1) as x → ∞. Actually, the same is true
for a number of multiplicative functions f , such as f = σ, the sum-of-divisors function, and
f = σ∗, the sum-of-unitary-divisors function, where we say d is a unitary divisor of n if d | n,
d > 0, and gcd(d, n/d) = 1. In fact, a more precise estimation of Vf(x) is known in these
cases; see Ford [For98].

The arithmetic function s(n) := σ(n)−n has been considered since antiquity. In studying
Vs(x) one immediately sees that if p, q are distinct primes, then s(pq) = p+ q+1. Assuming
that every even number m ≥ 8 can be represented as a sum p + q, where p, q are distinct
primes (a slightly stronger form of Goldbach’s conjecture), it follows that all odd numbers
m ≥ 9 are values of s. We do know that even a stronger form of Goldbach’s conjecture is
almost always true – see [MV75] for example – so as a consequence all odd numbers, except
for those in a set of asymptotic density 0, are values of s. But what of even values? In
1973, Erdős [Erd73] showed that if U is the set of positive numbers such that no s(n) ∈ U ,
then U has positive lower density. The set U is popularly known as the set of “non-aliquot”
or “untouchable” numbers. It is not known if U possesses an asymptotic density nor if the
upper density of U is smaller than 1

2
. It is known that the lower density of the non-aliquot

numbers is at least 0.06, see [CZ11].
In his thesis in 1976, te Riele [tR76] described an algorithm for enumerating all members of

s(N) to a given bound x. He did not compute the complexity of this algorithm, but it seems
to be of the shape x2+o(1). In fact, his algorithm does more than enumerate: it computes
all solutions to the inequality s(n) ≤ x with n composite. In this paper we describe an
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algorithm that achieves the more modest goal of enumerating s(N) (or equivalently, U) to x.
Our algorithm has running time of the shape x1+o(1). The algorithm of te Riele is based on
an earlier one of Alanen [Ala72]. Alanen was able to count U to 5,000, while with te Riele’s
improvements, he got the count to 20,000. We provide some statistics to x = 108 indicating
that the density of U perhaps exists.

te Riele [tR76] also suggested some problems similar to the distribution of s(N). Let
s∗(n) := σ∗(n)−n and let sϕ(n) := n−ϕ(n). (te Riele did not consider the latter function.)
In both cases, we again have almost all odd numbers in the image, since for p, q distinct
primes, s∗(pq) = s(pq) = p + q + 1 and sϕ(pq) = p + q − 1. Positive numbers missing from
the image of s∗ are sometimes called “unitary untouchable” numbers and numbers missing
from the range of sϕ are known as “noncototients”. Solving a problem of Sierpiński, it has
been shown that there are infinitely many noncototients (see [BS95, FL00, GM05]), but we
do not know if their lower density is positive. Nothing seems to be known about s∗(N). Let
U∗ = N \ s∗(N), the set of positive integers not of the form s∗(n). te Riele used a version of
his algorithm to enumerate U∗ to 20,000, finding only 160 members; perhaps a reasonable
interpretation of those data might lead one to think that U∗ has density 0. In this paper we
apply our algorithm to enumerate both U∗ and Φ := N\ϕ(N) to 108 leading us to conjecture
that both sets have a positive asymptotic density, though the density of U∗ seems to be
small. The previous best count of U∗ was to 105, a result of David Wilson, as recorded in
Guy’s Unsolved Problems in Number Theory. The previous best count for Φ was to 104, by
T. D. Noe, as recorded in the Online Encyclopedia of Integer Sequences.

Our principal result is the following.

Theorem 1.1. The set U∗ = N \ s∗(N) has a positive lower density.

Our proof follows the same general plan as that of Erdős [Erd73], except that an important
special case is dealt with via covering congruences. That covering congruences should arise
in the problem is not totally unexpected. As noted by te Riele [tR76], if the conjecture of
de Polignac [dP49] that every large odd number can be represented as 2w + p, where w ≥ 1
and p is an odd prime1, then since s∗(2wp) = 2w+p+1, it would follow that U∗ has asymptotic
density 0. However, Erdős [Erd50] and van der Corput [vdC50] independently showed that
de Polignac’s conjecture is false. As an important ingredient in our proof of Theorem 1.1, we
use the Erdős argument for disproving de Polignac’s conjecture, an argument which involves
covering congruences.

Though it is not known if the set U = N \ s(N) has upper density smaller than 1
2
nor if

the set Φ of noncototients has upper density smaller than 1
2
, we can achieve such a result for

U∗.

Theorem 1.2. The set U∗ has upper density smaller than 1
2
.

Our proof of this theorem follows from noting that de Polignac’s conjecture, mentioned
above, does hold for a positive proportion of numbers.

1Note that de Polignac allowed p = 1 in his conjecture, but the set of numbers 2w + 1 has density 0.
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2. Proof of Theorem 1.1

The set of positive lower density that we identify will be a subset of the integers that are
2 (mod 4). We begin with the following result.

Lemma 2.1. Let n be a positive integer. If n > 1 is odd or if n is divisible by 4 and also

two distinct odd primes, then s∗(n) 6≡ 2 (mod 4).

Proof. If pa is a power of an odd prime p, then σ∗(pa) = 1+pa is even. Thus, if n > 1 is odd,
then σ∗(n) is even, so that s∗(n) is odd; in particular, we have s∗(n) 6≡ 2 (mod 4). Similarly,
if n is divisible by k distinct odd primes, then 2k | σ∗(n). Hence, if k ≥ 2 and 4 | n, then
s∗(n) ≡ 0 6≡ 2 (mod 4). This concludes the proof of the lemma. �

We would like to handle the case of 4 | n and n is divisible by only one odd prime. The
following result almost shows that such numbers are negligible.

Lemma 2.2. The set of numbers s∗(2wpa) where p is an odd prime and a ≥ 2 has asymptotic

density 0.

Proof. We have s∗(2wpa) = 1 + 2w + pa. If s∗(2wpa) ≤ x, we have

2w ≤ x and pa ≤ x.

The number of choices for 2w is thus O(log x) and the number of choices for pa with a ≥ 2 is
thus O(

√
x/ logx). Thus, in all there are just O(

√
x) numbers 2wpa to consider, and so just

O(
√
x) numbers s∗(2wpa) ≤ x. Hence such numbers comprise a set of asymptotic density 0,

proving the lemma. �

For the case of s∗(2wp) we invoke the proof using covering congruences that shows that a
certain positive proportion of integers are not of this form.

Proposition 2.3. There are integers c, d with d odd such that if p is an odd prime, w is a

positive integer, then s∗(2wp) 6≡ c (mod d).

Proof. It is easy to verify that each integer w satisfies at least one of the following congru-
ences:

w ≡ 1 (mod 2), w ≡ 1 (mod 3),

w ≡ 2 (mod 4), w ≡ 4 (mod 8), (1)

w ≡ 8 (mod 12), w ≡ 0 (mod 24).

For each modulus m ∈ {2, 3, 4, 8, 12, 24} we find an odd prime q such that the multiplicative
order of 2 modulo q is exactly m. Valid choices for q are listed in the table below. With a
pair m, q, note that for any integer b, if w ≡ b (mod m), then s∗(2wp) 6≡ 1 + 2b (mod q) for
p 6= q. Choices for b are given in the above chart, and the consequently forbidden residue
class for N = s∗(2wp) is given in the table below.

m b q 2b mod q N mod q Conclusion:

2 1 3 2 N ≡ p N 6≡ 0 (mod 3) or p = 3
3 1 7 2 N ≡ 3 + p N 6≡ 3 (mod 7) or p = 7
4 2 5 −1 N ≡ p N 6≡ 0 (mod 5) or p = 5
8 4 17 −1 N ≡ p N 6≡ 0 (mod 17) or p = 17
12 8 13 −4 N ≡ −3 + p N 6≡ −3 (mod 13) or p = 13
24 0 241 1 N ≡ 2 + p N 6≡ 2 (mod 241) or p = 241
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Upon applying the Chinese Remainder Theorem to the six forbidden residue classes in the
last column, i.e.,

N ≡ 0 (mod 3), N ≡ 0 (mod 5),

N ≡ 3 (mod 7), N ≡ −3 (mod 13), (2)

N ≡ 0 (mod 17), N ≡ 2 (mod 241),

we obtain the residue class c (mod d), where c = −1518780 and d = 3 · 5 · 7 · 13 · 17 · 241 =
5592405.

To summarize the argument so far, suppose s∗(2wp) ≡ c (mod d). Since the congruences
(1) cover all integers, we must have w ≡ b (mod m) for one of the six choices for b (mod m)
in (1). In particular, unless p is the prime q corresponding to m, we have s∗(2wp) forbidden
from the corresponding residue class modulo q in (2). And in particular s∗(2wp) cannot be
in the residue class c (mod d).

We finally consider numbers of the form s∗(2wq) where q ∈ {3, 5, 7, 13, 17, 241}. Suppose
N ≡ c (mod d) and N = s∗(2wq). Since N ≡ 3 (mod 7) and none of the expressions

2w + 4, 2w + 14, 2w + 18, 2w + 242

can be 3 (mod 7), we can rule out q = 3, 13, 17, and 241. Since 2w+6 cannot be 0 (mod 17),
we can rule out q = 5. To rule out q = 7 we note that 2w+8 ≡ 2 (mod 241) has no solutions.
This proves the proposition. �

Remark 2.4. The last part of the proof shows that none of the numbers of the form s∗(2wq)
with q ∈ {3, 5, 7, 13, 17, 241} lie in the residue class c (mod d). We note that such numbers
comprise a set of asymptotic density 0, so even without this last part of the proof, we would
have asymptotically almost all of the numbers in the residue class c (mod d) not of the form
s∗(2wp).

Proposition 2.5. Let

Q = 2 · 3α · 5β · 17γ,
where α, β, γ are positive integers. If s∗(Q)/Q > 1 then the set of members of U∗ which have

Q as a unitary divisor has lower density at least
(

1− Q

s∗(Q)

)

384

dQ
,

where d is as in Proposition 2.3.

Proof. Consider the residue class c (mod d) of Proposition 2.3. We have c ≡ 0 (mod 3·5·17).
Thus the conditions that a number lie in the residue class c (mod d) and have Q as a unitary
divisor are compatible and there are exactly ϕ(510) = 128 such residue classes modulo 2dQ.
(Note that the least common multiple of d and Q is dQ/255, so there are 510 residue
classes modulo 2dQ that are c (mod d) and 0 (mod Q). Of these, ϕ(510) = 128 have Q
as a unitary divisor.) Fix one of these residue classes, call it r. We first show that the
proportion of numbers r (mod 2dQ) that are not in the form s∗(n) is at least 1−Q/s∗(Q).
By Lemmas 2.1 and 2.2 we may assume that n ≡ 2 (mod 4) or n is divisible by 4 and just
one odd prime to the first power. Since we are only looking at values in the residue class c
(mod d), Proposition 2.3 shows the latter case does not occur, that is, we must have n ≡ 2
(mod 4). Then n has the unitary divisor n/2 so that s∗(n) > n/2. In particular, if we are
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counting values s∗(n) ≤ x, then we must have n < 2x. It follows from [tR76, Lemma 9.2]
(which is attributed to [Sco73]) that the number of n < 2x with σ∗(n) 6≡ 0 (mod 2dQ) is
o(x) as x → ∞. Thus, we may assume that σ∗(n) ≡ 0 (mod 2dQ), which in turn implies
that n ≡ −r (mod 2dQ), and so Q is a unitary divisor of n. This implies that

s∗(n) = σ∗(n)− n = σ∗(Q)σ∗(n/Q)− n ≥ σ∗(Q)n/Q− n = (s∗(Q)/Q)n.

Since s∗(n) ≤ x, we have n ≤ (Q/s∗(Q))x. Thus, the number of values of s∗(n) ≡ r
(mod 2dQ) in [1, x] is at most (Q/s∗(Q))(x/2dQ) + o(x) as x → ∞. Hence, within the
residue class r (mod 2dQ) the lower density of U∗ is at least (1 − Q/s∗(Q))/2dQ. Noting
that there are 128 values of r (mod 2dQ), we get that the lower density of U∗ within the
residuce class c mod d and with Q as a unitary divisor is at least (1−Q/s∗(Q))128/2dQ =
(1−Q/s∗(Q))64/dQ.

Note that 384 = 6 · 64. The 6-fold improvement in the proposition is explained as follows.
In the proof of Proposition 2.3, after we choose the residue classes 1 (mod 2), 2 (mod 4),
and 4 (mod 8), there are actually 6 choices for the remaining congruence classes mod 3, 12,
and 24. In the proof we chose 1, 8, and 0, respectively. Instead we could have chosen 1, 0,
8, or 2, 0, 16, or 2, 4, 0, or 0, 4, 8, or 0, 8, 16. Each of the 6 choices leads to a residue class
cj (mod d) for j = 1, 2, . . . , 6 for which the above argument works just as well.

This completes the proof of the proposition. �

Let Q = 2 · 3 · 5 · 17 = 510. We have

s∗(Q)

Q
=

3 · 4 · 6 · 18
510

− 1 =
131

85
> 1,

so that Proposition 2.5 implies that the lower density of those members of U∗ with Q as a
unitary divisor is at least

(

1− 85

131

)

384

5592405 · 510 > 4.727× 10−8. (3)

This immediately proves Theorem 1.1.
We can improve our estimate for the lower bound of the lower density of U∗ as follows.

First, instead of choosing α, β, γ as 1, 1, 1 in the definition of Q, we can choose α, β, γ as 1,
1, 2, or 1, 2, 1, or 1, 3, 1, or 2, 1, 1. These choices in turn lead to estimates for the lower
density of the set of those numbers in U∗ with these unitary divisors of

2.29× 10−9, 4.53× 10−9, 6.3× 10−10, 4.72× 10−9,

respectively. A further improvement can be made by changing the residue class 4 (mod 8)
in our covering to 0 (mod 8). This in turn changes our choice for residue classes modulo 3,
12, and 24 in the proof of Proposition 2.3 to 1, 8, 12 plus 5 other triples. In this case we
do not have 17 as a divisor of our value (before, the residue class modulo 17 was 24 + 1 ≡ 0
(mod 17), but now it is 20 + 1 ≡ 2 (mod 17)). Thus, we have an analogous version of
Proposition 2.5 with Q = 2 · 3α · 5β. Using this with Q = 30 leads to an estimate for the
lower density of the set of members of U∗ with 30 as a unitary divisor and not divisible by
17 of

(

1− 30

s∗(30)

)

24

5592405 · 30 > 4.087× 10−8.

There are of course other small improvements to be made, but the estimates so far imply
that the lower density of U∗ is greater than 10−7.
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Remark 2.6. It is not too hard to use these ideas to show that the set U ∩ U∗ of numbers
that are simultaneously not of the form s(n) nor s∗(m) has positive lower density. In fact,
it is possible to show this set has lower density larger than 10−8. To do this one can exploit
the fact that for n squarefree we have s(n) = s∗(n). Thus, in trying to find values for s or s∗

with 510 as a unitary divisor and in the residue class c (mod d), for both problems we are
restricted to searching over the set A of numbers n ≤ (510/s(510))x with n ≡ c (mod d) and
with 510 as a unitary divisor. The only point of departure between the two counts comes
from those members of A that are not squarefree. But a simple calculation shows that more
than 97% of the members of A are squarefree, so there are not enough of the non-squarefree
members to appreciably affect our estimates. That is, (3) with “1 − 85/131” replaced with
“0.97 − 85/131” holds as a lower bound for the lower density of U ∩ U∗. Probably with a
little work, the lower bound 10−8 can be improved to 10−7.

3. Proof of Theorem 1.2

We again focus on numbers s∗(2wp) with w ≥ 1 and p an odd prime, but instead of looking
at even numbers not of this form, we look at even numbers that are of this form. We have

s∗(2wp) = 2w + p+ 1.

Thus, Theorem 1.2 will follow if we show that the set of numbers of the form 2w + p has a
positive lower density. (The case w = 0 is not permitted in our problem, since s∗(20p) = 1,
but the set of numbers of the form 20 + p has density 0. In addition, the case p = 2 is not
permitted in our problem, but again the set of numbers of the form 2w + 2 has density 0.)

Though it is not hard to prove the result directly using the Cauchy–Schwarz inequality
and sieve methods, this theorem is already in the literature. In particular, in 1934, Ro-
manov [Rom34] proved that the lower density of numbers of the form 2w + p is positive.
Chen and Sun [CS04] proved that the lower density is at least 0.0868, and this was improved
in Habsieger and Roblot [HR06], Lü [L07], and Pintz [Pin06] to 0.09368. It follows that

10−7 < dU∗ ≤ d̄ U∗ ≤ 0.40632,

where d denotes lower asymptotic density and d̄ denotes upper asymptotic density.

4. The enumeration of U∗

In this section we introduce our methods on numerically enumerating U∗. We begin with
the following elementary observation.

Proposition 4.1. Let m, j be positive integers with m odd. Then

(i) s∗(2m) = 3σ∗(m)− 2m,

(ii) s∗(2j+1m) = 2s∗(2jm)− σ∗(m).

Proof. This follows immediately from the fact that σ∗(2jm) = (2j + 1)σ∗(m). �

We now can describe our procedure. Say we wish to enumerate the even members of U∗

[1, x]. For each odd number m ≤ x we compute σ∗(m) (more on this later). Then starting
with t = 3σ∗(m) − 2m we iterate the recurrence t 7→ 2t − σ∗(m) until we exceed x. Each
number t visited is an even member of s∗(N). Thus, after exhausting this procedure, we
have visited every even member of s∗(N) in [1, x], so the even numbers not visited comprise
the even members of U∗ in [1, x].
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In our implementation we used trial division to factor each odd number m in [1, x]. Instead
one might use the method of Moews and Moews [MM06] which can compute each σ∗(m) for

m up to x in time Õ(x). (The expression Õ(x) denotes the bound x(log x)O(1).)
Since it is time consuming to manage set membership in the set of even members of s∗(N),

we instead initialize a function f defined as identically 1 for all even numbers up to x.
Whenever we visit an even number t in s∗(N) ∩ [1, x], we reassign f(t) to 0. At the end of
the procedure, our function f is then the characteristic function of the even members of U∗

in [1, x].
There remains the task of finding the odd members of U∗ in [1, x]. Note that 3, 5, and

7 are all in U∗. As remarked earlier, it follows from a slightly stronger form of Goldbach’s
conjecture (namely, every even number starting at 8 is the sum of two distinct primes) that
every odd number n ≥ 9 is of the form s∗(pq) = p + q + 1 where p, q are distinct primes.
Thus, to enumerate the odd members of U∗ to x it suffices to verify this slightly stronger
form of Goldbach’s conjecture to x. On the webpage [Oli12] (maintained by Oliveira e Silva)
the verification of this stronger form of Goldbach’s conjecture is reported to x = 4 × 1018.
In our calculation of U∗ we search only to 108, so the numbers 3, 5, and 7 are the only odd
ones in this range. Concerning the time bound of Õ(x), this too can stand as a time bound
for verifying the slightly stronger form of Goldbach’s conjecture that we are using, modulo
the reasonable assumption that every even n ≥ 8 has a decomposition as p + q where p, q
are primes and p ≤ (log n)O(1). Even without such an assumption, since exceptions are rare,

the theoretical time bound of Õ(x) might still be achievable.
In the table below we record counts to 108 for U∗. Here, N(x) denotes the number of

members of U∗ up to x, D(x) = N(x)/x denotes the density of U∗ ∩ [1, x] in [1, x], and ∆
records the difference from the prior entry.

x N(x) ∆ 100D(x) x N(x) ∆ 100D(x)

100000 862 862 0.86200 6000000 60257 10176 1.00428
200000 1846 984 0.92300 7000000 70518 10261 1.00740
300000 2811 965 0.93700 8000000 80987 10469 1.01234
400000 3790 979 0.94750 9000000 91087 10100 1.01208
500000 4841 1051 0.96820 10000000 101030 9943 1.01030
600000 5795 954 0.96583 20000000 203113 102083 1.01557
700000 6810 1015 0.97286 30000000 304631 101158 1.01544
800000 7828 1018 0.97850 40000000 405978 101347 1.01495
900000 8865 1037 0.98500 50000000 509695 103717 1.01939
1000000 9903 1038 0.99030 60000000 615349 105654 1.02558
2000000 19655 9752 0.98275 70000000 720741 105392 1.02963
3000000 29700 10045 0.99000 80000000 821201 100460 1.02650
4000000 40302 10602 1.00755 90000000 923994 102793 1.02666
5000000 50081 9779 1.00162 100000000 1028263 104269 1.02826

All of our calculations were done with Mathematica, using their FactorInteger function
to factor each odd number m appearing. It should be expected that with a more serious
implementation using the techniques of [MM06], one could go considerably further.
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5. The enumeration of Φ and U

The algorithms for enumerating Φ = N \ sϕ(N) and U = N \ s(N) are more or less similar
to the algorithm introduced in the previous section. However, the relations we employ are
different. The following statement is an elementary exercise.

Proposition 5.1. Let sϕ(n) := n − ϕ(n). Suppose also that m, j are positive integers with

m odd. The following statements hold:

(i) sϕ(2m) = 2m− ϕ(m),
(ii) sϕ(2

j+1m) = 2sϕ(2
jm).

Since sϕ(n) ≡ n (mod 2) when n > 2, to count even noncototients it suffices to consider
only n = 2jm with m, j positive integers and m odd. Further, for such a number n, we
have sϕ(n) > m, so if we are enumerating to x, we need only consider odd numbers m < N .
Thus, we have an entirely analogous algorithm as for U∗.

We record below our counts for noncototients to 108. Let Nϕ(x) denotes the number of
noncototients up to x and let D(x) denote their density. As before ∆ records the difference
in the count from the prior entry.

x Nϕ(x) ∆ D(x) x Nϕ(x) ∆ D(x)

100000 10527 10527 0.105270 6000000 674884 113034 0.112481
200000 21433 10906 0.107165 7000000 788080 113196 0.112583
300000 32497 11064 0.108323 8000000 901478 113398 0.112685
400000 43559 11062 0.108898 9000000 1014711 113233 0.112740
500000 54757 11198 0.109514 10000000 1128160 113449 0.112816
600000 65938 11181 0.109897 20000000 2262697 1134537 0.113135
700000 77115 11177 0.110164 30000000 3398673 1135976 0.113289
800000 88306 11191 0.110383 40000000 4534957 1136284 0.113374
900000 99554 11248 0.110616 50000000 5671818 1136861 0.113436
1000000 110786 11232 0.110786 60000000 6808454 1136636 0.113474
2000000 223337 112551 0.111669 70000000 7944836 1136382 0.113498
3000000 335920 112583 0.111973 80000000 9081939 1137103 0.113524
4000000 448955 113035 0.112239 90000000 10218937 1136998 0.113544
5000000 561850 112895 0.112370 100000000 11355049 1136112 0.113550

The case for s(n) is somewhat different. First note that we have the analogous elementary
exercise.

Proposition 5.2. Let s(n) := σ(n)− n. Suppose also that m, j are positive integers and m
is odd. The following statements hold:

(i) s(2m) = 3σ(m)− 2m,

(ii) s(2j+1m) = 2s(2jm) + σ(m).

In the case of U , it is not enough to check the numbers s(2jm) ≤ x for odd m ≤ x. We
have s(n) even if and only if

1. n is even and not a square nor twice a square, or
2. n is an odd square.

When enumerating the even values of s(n) in [1, x], in case 1 it suffices to take s(2jm) for
odd m < x (since s(2jm) > m) with m not a square. In case 2, we must consider s(m2)
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for odd m < x (since s(m2) > m). Case 1 is entirely analogous to the enumeration of U∗

and Φ except that if σ(m) is odd (signifying that m is a square), we do not enter a loop
that increases the power of 2, and we pass over this m. To deal with the odd squares, it is
helpful to use the case 1 calculation to find s(p2) for prime p < x. These are detected as
follows. If σ(m) = m + 1, signifying that m is a prime, we record the number m + 1 as an
even value of s since it is s(m2). This would leave the values of s(m2) ≤ x with m odd and
composite. In this case, we have that m < x2/3. Indeed, if g | m and m1/2 ≤ g < m, then
s(m2) > gm ≥ m3/2. Thus, we may run a small side program for odd composite numbers
m < x2/3, computing s(m2) in each case.

We conclude that as with the enumeration of U∗, both the enumeration of Φ and U can
be achieved in time Õ(x). Here are our counts of U to 108, where Nσ(x) is the number of
members of U in [1, x] and ∆, D(x) are as before.

x Nσ(x) ∆ D(x) x Nσ(x) ∆ D(x)

100000 13863 13863 0.138630 6000000 936244 158572 0.156041
200000 28572 14712 0.142860 7000000 1095710 159466 0.156530
300000 43515 14940 0.145050 8000000 1255016 159306 0.156877
400000 58459 14944 0.146148 9000000 1414783 159767 0.157198
500000 73565 15106 0.147130 10000000 1574973 160190 0.157497
600000 88828 15263 0.148047 20000000 3184111 1609138 0.159206
700000 104062 15234 0.148660 30000000 4804331 1620220 0.160144
800000 119302 15240 0.149128 40000000 6430224 1625893 0.160756
900000 134758 15456 0.149731 50000000 8060163 1629939 0.161203
1000000 150232 15474 0.150232 60000000 9694467 1634304 0.161574
2000000 305290 155058 0.152645 70000000 11330312 1635845 0.161862
3000000 462110 156820 0.154037 80000000 12967239 1636927 0.162090
4000000 619638 157528 0.154910 90000000 14606549 1639310 0.162295
5000000 777672 158034 0.155530 100000000 16246940 1640391 0.162469

6. Discussion

We have been able to get considerably farther than prior enumerations for U∗, Φ, and U .
As remarked earlier, our algorithm is essentially linear, while the earlier methods seem to
have traversed over a substantially larger search space. The method of te Riele elaborates on
an earlier method of Alanen [Ala72], and we have not seen any other algorithms discussed.

In [tR76], te Riele suggests an interesting random model that possibly could predict the
approximate number of members of our various sets to x. Namely, in each case, one might
compute the number M(x) of integers that the functions s∗, sϕ, s take to even numbers in
[1, x]. Assuming randomness, the number of even numbers not represented would be about
1
2
x(1 − 2/x)M(x). This is an appealing thought, and it should be remarked that via the

continuity of the distribution functions for σ∗(n)/n, ϕ(n)/n, and σ(n)/n, in each case, we
have M(x) ∼ cx for a positive constant c that is appropriate for the particular function.
(In the case of s∗ one needs to add in x/ log 2 to what the distribution-function argument
gives, coming from the density-0 set of integers 2wp.) te Riele found that when x = 20,000,
the number of even members of U is 2565, compared with a prediction of 2610. For U∗, the
number of even ones is 157 compared with a prediction of 90.
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We have worked out this computation at x = 108. In the case of s∗, we found that there
are 290,100,230 numbers n with s∗(n) even and at most 108. This suggests that there are
about

1

2
108

(

1− 2

108

)290,100,230

≈ 151,075

members of U∗ to 108 compared with the actual number of 1,028,263. Thus, the heuristic
model seems not too good for U∗.

It is better for Φ. In the case of sϕ, there are 85,719,597 values of n with sϕ(n) even and
at most 108. This would suggest that there are about

1

2
108

(

1− 2

108

)85,719,597

≈ 9,003,659

noncototients to 108, compared with the actual number of 11,355,049.
It is better still for U . There are 62,105,426 values of n with s(n) even and at most 108.

The model suggests then that there are about

1

2
108

(

1− 2

108

)62,105,426

≈ 14,433,734

members of U to 108, compared with the actual number of 16,246,940.
We record some open problems. The data suggest that in all the cases we considered, the

density exists. Can this be proved? Is there a positive proportion of even numbers in s(N)?
The same question for sϕ(N). Can one prove that the lower density of Φ is positive?
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