WCNTC
 Asilomar, December 16-20, 2019

Glasby's cyclotomic ordering conjecture

Carl Pomerance
Dartmouth College
with Simon Rubinstein-Salzedo

Let $\Phi_{n}(x)$ denote the n-th cyclotomic polynomial. It is defined as the minimum polynomial of $e^{2 \pi i / n}$ over \mathbb{Z}. For example:

$$
\begin{aligned}
& \Phi_{1}(x)=x-1 \\
& \Phi_{2}(x)=x+1 \\
& \Phi_{3}(x)=x^{2}+x+1 \\
& \Phi_{4}(x)=x^{2}+1 \\
& \Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{6}(x)=x^{2}-x+1 \\
& \Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{8}(x)=x^{4}+1
\end{aligned}
$$

We know that $\Phi_{n}(x)$ has degree $\varphi(n)$.

Glasby's cyclotomic ordering conjecture

Note that if $f(x), g(x) \in \mathbb{R}[x]$, then there is some x_{0} such that $f(x) \geq g(x)$ for all $x \geq x_{0}$, or $g(x) \geq f(x)$ for all $x \geq x_{0}$. In this way, we can put a total ordering on the cyclotomic polynomials.

Recently (in 2018) Stephen Glasby conjectured that one could determine the ordering for cyclotomic polynomials by looking at integer arguments ≥ 2. Specifically, he conjectured that for any positive integers m, n we have $\Phi_{m}(j) \geq \Phi_{n}(j)$ for all integers $j \geq 2$ or $\Phi_{m}(j) \leq \Phi_{n}(j)$ for all integers $j \geq 2$.

Theorem (Pomerance and S. Rubinstein-Salzedo, 2019)
If m, n are unequal positive integers and x is a real root of $\Phi_{m}(x)-\Phi_{n}(x)$, then $1 / 2<|x|<2$, except for $\Phi_{2}(2)=\Phi_{6}(2)$.

Theorem (Pomerance and S. Rubinstein-Salzedo, 2019) If m, n are unequal positive integers and x is a real root of $\Phi_{m}(x)-\Phi_{n}(x)$, then $1 / 2<|x|<2$, except for $\Phi_{2}(2)=\Phi_{6}(2)$.

In particular we can determine the cyclotomic ordering merely by looking at the values at 2 , with the proviso that Φ_{6} comes after Φ_{2}.

We conjecture the theorem holds as well for complex x.

We also conjecture that the upper bound 2 in the theorem is best possible in that for any fixed $\epsilon>0$, there are infinitely many pairs of unequal positive integers m, n with $\Phi_{m}(x)=\Phi_{n}(x)$ for some $x \in(2-\epsilon, 2)$.

We also conjecture that the upper bound 2 in the theorem is best possible in that for any fixed $\epsilon>0$, there are infinitely many pairs of unequal positive integers m, n with $\Phi_{m}(x)=\Phi_{n}(x)$ for some $x \in(2-\epsilon, 2)$.

For example,

- $\Phi_{209}-\Phi_{179}$ has a root at $1.99975454398254 \cdots$,
- $\Phi_{221}-\Phi_{191}$ has a root at $1.99993512065828 \cdots$,
- $\Phi_{527}-\Phi_{479}$ has a root at $1.99999618493891 \cdots$,
- $\Phi_{713}-\Phi_{659}$ has a root at $1.99999994016248 \cdots$.

These near-misses were constructed as follows: let p, q, r be primes such that $p q=p+q+r$, and $p<q$. Then we claim that $\Phi_{p q}-\Phi_{r}$ has a root very close to the largest real root of $\psi_{p-1}(x):=x^{p-1}-x^{p-2}-x^{p-3 \ldots-x-1}$, with this root getting closer the larger that q is. Note that the latter polynomial has a root very close to 2 , since $\psi_{p-1}(2)=1$ and $\psi_{p-1}^{\prime}(2)=2^{p-1}-1$, so the largest real root of ψ_{p-1} is approximately $2-\frac{1}{2^{p-1}-1}$.

By the prime k-tuples conjecture there are infinitely many prime triplets p, q, r with p, q large and $p q=p+q+r$. Indeed, for each fixed prime p, there should be infinitely many primes q with $q(p-1)-p$ prime.

Can the existence of infinitely many of these prime triplets be proved unconditionally?

Can we prove that there is some $c>1$ such that for infinitely many unequal pairs m, n we have a real root of $\Phi_{m}-\Phi_{n}$ greater than c ?

Yes, here is how. Suppose p, q are primes with q large and $p=q+k$, with $k>0$ small. Then $\Phi_{2 p}-\Phi_{q}$ has a real root near to the largest root ρ_{k} of $x^{k+1}-x^{k}-x-1$. It's clear that $\rho_{k}>1$. So, all we need to do is find infinitely many pairs of primes with gap k.

By Zhang, Maynard, Tao, and Polymath, this can be done for some $k \leq 246$. So there are infinitely many real cyclotomic coincidences in (1.01912,2).

Theorem (Pomerance and S. Rubinstein-Salzedo, 2019) If m, n are unequal positive integers and x is a real root of $\Phi_{m}(x)-\Phi_{n}(x)$, then $1 / 2<|x|<2$, except for $\Phi_{2}(2)=\Phi_{6}(2)$.

A few words on the proof: We reduce to showing that if $0<x \leq 1 / 2$, then $\Phi_{m}(x) \neq \Phi_{n}(x)$. Assume so, and now assume that $x \geq 2, \Phi_{m}(x)=\Phi_{n}(x)$, and $\max \{\varphi(m), \varphi(n)\} \geq 4$ (with the smaller cases easily handled). We show that $\Phi_{n}(x) \approx x^{\varphi(n)}$, when $x \geq 2$. Using this, we can show that $\varphi(m)=\varphi(n)$. Note that $x^{\varphi(n)} \Phi_{n}(1 / x)=\Phi_{n}(x)$. Thus, $\Phi_{m}(1 / x)=\Phi_{n}(1 / x)$, a case we've handled.

So, how to handle the case $0<x \leq 1 / 2$?

Here, we consider various cases. Let $q(n)=n / \operatorname{rad}(n)$, where $\operatorname{rad}(n)$ is the largest squarefree divisor of n. So, if $n=\Pi p_{i}^{a_{i}}$, then $q(n)=\prod p_{i}^{a_{i}-1}$. It's a measure of how far n is from being squarefree.

Case 1: m, n squarefree.
Case 2: m squarefree, $q(n) \geq 4$.
Case 3: m squarefree, $q(n)=3$.
Case 4: m squarefree, $q(n)=2$.
Case 5: $2 \leq q(m) \leq q(n)$.

We found Case 4 the most tedious.

As mentioned, we believe our theorem holds for complex coincidences of Φ_{m}, Φ_{n}, in fact, we believe that if $z \notin \mathbb{R}$ and $\Phi_{m}(z)=\Phi_{n}(z)$, then $1 / \sqrt{2}<|z|<\sqrt{2}$. This would be best possible on the prime k-tuples conjecture, since if m, n are odd with $\Phi_{m}-\Phi_{n}$ having a root near 2 , them

$$
\Phi_{4 m}(x)-\Phi_{4 n}(x)=\Phi_{m}\left(-x^{2}\right)-\Phi_{n}\left(-x^{2}\right)
$$

has roots near $\pm i \sqrt{2}$.
We conjecture that if m, n are coprime then the non-real roots of $\Phi_{m}-\Phi_{n}$ cluster near the unit circle in that there are at most finitely many cases with a root z with $|z|>1+\epsilon$ or $|z|<1-\epsilon$.

Rubinstein-Salzedo and I considered $\Phi_{m}-\Phi_{n}$. As pointed out to me by Moree, C. Nicol, in 2000, considered $\Phi_{m}+\Phi_{n}$. He showed that if m, n are primes, the sum is irreducible. Further if m, n are coprime and $\Phi_{m}+\Phi_{n}$ is reducible, then it seems to contain a cyclotomic factor (and after dividing out by cyclotomic factors, the resulting polynomial is irreducible). This has been checked for $m, n \leq 150$. An example:

$$
\Phi_{22}(x)+\Phi_{7}(x)=\left(x^{2}+1\right)\left(x^{8}-x^{7}+2 x^{4}+2\right)
$$

Thank You

