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You would think that all of the issues surrounding addition and

multiplication were sewed up in third grade!

Well in this talk we’ll learn about some things they didn’t tell

you . . .
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Here’s one thing they did tell you:

Find 483 × 784.

483

× 784

———

1932

3864

3381

—–——

378672
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If instead you had a problem with two 23-digit numbers, well

you always suspected deep down that math teachers are cruel

and sadistic. Just kidding!

In principle if you really have to, you could work out 23-digits

times 23-digits on paper, provided the paper is big enough, but

it’s a lot of work.

So here’s the real question: How much work?
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Of course the amount of work depends not only on the length

of the numbers. For example, multiplying 1022 by 1022, that’s

23-digits times 23-digits, but you can do it in your head.

In general, you’ll take each digit of the lower number, and

multiply it painstakingly into the top number. It’s less work if

some digit in the lower number is repeated, and there are

definitely repeats, since there are only 10 possible digits. But

even if it’s no work at all, you still have to write it down, and

that’s 23 or 24 digits. At the minimum (assuming no zeroes),

you have to write down 232 = 529 digits for the

“parallelogram” part of the product. And then comes the final

addition, where all of those 529 digits need to be processed.
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So in general if you multiply two n-digit numbers, it would

seem that you’d be taking n2 steps, unless there were a lot of

zeroes. This ignores extra steps, like carrying and so on, but

that at worst changes n2 to maybe 2n2 or 3n2. We say that

the “complexity” of “school multiplication” for two n-digit

numbers is of order n2.
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A. A. Karatsuba (1937–2008): Devised a faster way to multiply

two n-digit numbers taking about n1.6 elementary steps.
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Here is Karatsuba’s idea: use high school algebra!

Say the numbers A and B each have n digits. Let m = n/2
(okay, we assume that n is even). Write

A = A110m +A0, B = B110m +B0,

where A1, A0, B1, B0 are all smaller than 10m, so have at most
m digits. Then our product AB is

AB = (A1B1)102m + (A1B0 +A0B1)10m +A0B0,

so our problem is broken down to 4 smaller multiplication
problems, each of size m×m, namely

A1B1, A1B0, A0B1, A0B0,

and each of these would seem to take 1/4 as much work as the
original problem.
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So, unfortunately 4 problems each taking 1/4 as much work, is
no savings!

However, we also have

(A1 +A0)(B1 +B0) = A1B1 + (A1B0 +A0B1) +A0B0,

so we can really do it in 3 multiplications, not 4 (!). Namely,

A1B1, A0B0, (A1 +A0)(B1 +B0).

After we do these, we have our three coefficients, where the
middle one, A1B0 +A0B1, is the third product minus the first
two:

A1B0 +A0B1 = (A1 +A0)(B1 +B0)−A1B1 −A0B0.

This idea can then be used on each of the three smaller
multiplication problems, and so on down the fractal road,
ending in about n1.6 elementary steps.
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Karatsuba’s method was later improved by Toom, Cook,

Schönhage, & Strassen. After their efforts we have the Fast

Fourier Transform that allows you to multiply in about n · ln(n)

steps. (So ln(n) is proportional to the number of digits of the

number of digits of the numbers being multiplied!)

Small improvements were made by Fürer in 2007 and by De,

Kurur, Saha, & Saptharishi in 2008.

We don’t know if we have reached the limit! In particular:

What is the fastest way to multiply?
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Let’s play Jeopardy Multiplication!

Here are the rules: I give you the answer to the multiplication

problem, and you give me the problem phrased as a question.

You must use whole numbers larger than 1.

So, if I say “15”, you say “What is 3× 5?”

OK, let’s play.
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Let’s do 8051.
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Let’s do 8051.

Thinking, thinking . . . . Hmm,
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Let’s do 8051.

Thinking, thinking . . . . Hmm,

8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97.

Got it!

What is 83× 97?
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So, here’s what we don’t know:
How many steps does it take to figure out the factors if
you are given an n-digit number which can be factored?
(A trick problem would be: 17. The only way to write it as
a× b is to use 1, and that was ruled out. So, prime numbers
cannot be factored, and the thing we don’t know is how long it
takes to factor the non-primes.)

The best answer we have so far is about 10n
1/3

steps, and
even this is not a theorem, but our algorithm (known as the
number field sieve) seems to work in practice.

This is all crucially important for the security of Internet
commerce. Or I should say that Internet commerce relies on
the premise that we cannot factor much more quickly than
that.
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A couple of words about factoring, that is, on how to win at

Multiplication Jeopardy.

The trick with 8051 (due to Fermat), namely that

8051 = 8100− 49, is sort of generalizable as might be

illustrated by 1649.
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A couple of words about factoring, that is, on how to win at
Multiplication Jeopardy.

The trick with 8051 (due to Fermat), namely that
8051 = 8100− 49, is sort of generalizable as might be
illustrated by 1649.

We look for a square just above 1649. The first is 412 = 1681.
Well

412 − 1649 = 32 and 32 is not a square.

Try again. The next square is 422 = 1764 and

422 − 1649 = 115 and 115 is not a square.

Trying again, the next square is 432 = 1849 and

432 − 1649 = 200 and 200 is not a square.
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But wait, look at our 3 non-squares: 32, 115, 200.

Note that we can make a square out of two of them:

32× 200 = 6400 = 802.

In general, if N is a positive integer, we’ll write x ≡ y (mod N)

if x, y leave the same remainder when divided by N . For

example, 17 ≡ 37 (mod 10) and 43 ≡ 98 (mod 11). It’s really

very handy notation!
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Let N = 1649, the number we’re trying to factor. Then we
have

412 ≡ 32 (mod N), 432 ≡ 200 (mod N),

and so

(41× 43)2 = 412 × 432 ≡ 32× 200 = 802 (mod N).

Now 41× 43 ≡ 114 (mod N), so 1142 ≡ 802 (mod N).

It is not true that N = (114− 80)(114 + 80), but it is true that
the greatest common divisor of 114− 80 = 34 with N is 17.
(And finding the greatest common divisor of two numbers is
speedy.)

Hey! That proves that N = 1649 is divisible by 17. Dividing,
the other factor is 97. So, we have it: What is 17× 97?
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The various elements here can actually be made into a speedy

algorithm, the quadratic sieve. The number field sieve is a

fancier version but has the same underlying flavor of assembling

squares whose difference is divisible by N .

Despite our success with factoring, it still is very difficult. Hard

numbers with 300 decimal digits are beyond our reach at

present. The really amazing thing is we can apply our

ignorance to make a secure cryptographic system!
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Here are three famous unsolved problems involving both

addition and multiplication:

Goldbach’s conjecture: Every even number after 2 is the

sum of two primes.

The twin prime conjecture: There are infinitely many

pairs of primes that differ by 2.

The ABC conjecture: If A+B = C where no prime divides

all 3, must the product of the primes dividing ABC exceed

C1−ε? (Assume ε > 0 is arbitrary but fixed and C is large.)
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Here’s another problem, this from the tv show “The Big Bang

Theory”.

Note that 73 is the 21st prime number, and 7× 3 = 21. Say

the nth prime has the “product property” if n is the product of

the digits of pn.

We know two other examples: 17 (the 7th prime) and

2,475,989, the 181,440th prime. These are the only examples

known up to the 1010th prime. We know that all examples are

below 1045. Are there any more?

On the show Sheldon also notes that reversing 73, one gets 37,

the 12th prime, and 12 is the reverse of 21.
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Recently Chris Spicer and I showed that 73 is the only

“Sheldon prime”, namely the only prime with both the product

property and the mirror property.



Here’s a famous unsolved problem involving only simple

arithmetic:

For even n, let f(n) = n/2 and for odd n, let f(n) = (3n+ 1)/2.

Consider the sequence n, f(n), f(f(n)), . . . .

For example: 3 7→ 5 7→ 8 7→ 4 7→ 2 7→ 1 7→ 2 7→ 1 . . .

Or: 7 7→ 11 7→ 17 7→ 26 7→ 13 7→ 20 7→ 10 7→ 5 7→ · · · 7→ 1

Is it true that starting with any positive integer n, the

sequence n, f(n), f(f(n)), . . . eventually hits the number 1?
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And here’s another famous problem (in disguised form):

Consider ln(A(N)), where A(N) is the least common multiple

of 1,2, . . . , N .

For example: A(10) = 2520 and ln(A(10)) ≈ 7.8.

Another example: ln(A(100,000,000)) ≈ 99,998,242.8.

For N ≥ 3, do we always have | ln(A(N))−N | <
√
N(ln(N))2?

The Clay Mathematics Institute offers $1,000,000 for a proof!
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Here’s an unsolved problem concerning just addition.

We all recall the addition table:

+ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20
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The 10× 10 array of sums has all the numbers from 2 to 20

for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all

of the numbers from 2 to 2N for a total of 2N − 1 different

sums.

Now, what if we were to be perverse and instead of having the

numbers from 1 to N , we had some arbitrary list of N different

numbers added to themselves.

Can you arrange it so there are fewer than 2N − 1 different

sums?
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The 10× 10 array of sums has all the numbers from 2 to 20
for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all
of the numbers from 2 to 2N for a total of 2N − 1 different
sums.

Now, what if we were to be perverse and instead of having the
numbers from 1 to N , we had some arbitrary list of N different
numbers.

Can you arrange it so there are fewer than 2N − 1 different
sums?

If you answered “No, there are always at least 2N − 1 different
sums,” you’d be right.
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Here’s an example where there are many different sums:

+ 1 2 4 8 16 32 64 128 256 512
1 2 3 5 9 17 33 65 129 257 513
2 3 4 6 10 18 34 66 130 258 514
4 5 6 8 12 20 36 68 132 260 516
8 9 10 12 16 24 40 72 136 264 520

16 17 18 20 24 32 48 80 144 272 528
32 33 34 36 40 48 64 96 160 288 544
64 65 66 68 72 80 96 128 192 320 576

128 129 130 132 136 144 160 192 256 384 640
256 257 258 260 264 272 288 320 384 512 768
512 513 514 516 520 528 544 576 640 768 1024
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So, sometimes there are few distinct sums and sometimes
many.
What structure is forced on the set if there are few
distinct sums?
We know the answer when there are very few distinct sums:

Gregory Freiman
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Here’s something with multiplication tables.

Let’s look at the N ×N multiplication table using the numbers

from 1 to N . With addition, we were able to count exactly how

many distinct numbers appear in the table.

How many different numbers appear in the N ×N
multiplication table?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So M(10) = 42.
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It is really amazing that though M(N) is not far below N2

looking “from a distance”, if we look “close up” we see that

M(N)/N2 tends to 0 as N grows larger and larger.

It may be too difficult to expect a neat exact formula for M(N).

After Erdős, Tenenbaum, and Ford, we now know the

(complicated) order of magnitude for M(N) as N grows.

(It’s something like N2/(ln(N))E(ln(ln(N)))1.5, where

E = 0.086 . . . is an explicitly known constant.)
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Paul Erdős, 1913–1996

Find an asymptotic formula for M(N) as N grows?
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Let me close with one unified problem about addition and

multiplication tables. It’s due to Erdős & Szemerédi.

Look at both the addition and multiplication tables for N

carefully chosen numbers.

We’ve seen that if we take the first N numbers we get close to

N2 distinct entries in the multiplication table, but few in the

addition table.

At the other extreme, if we take for our N numbers the powers

of 2, namely 1,2,4, . . . ,2N−1, then there are at least 1
2N

2

distinct entries in the addition table and only 2N − 1 entries in

the multiplication table.
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If we take N random numbers, then it’s likely both tables have

close to N2 distinct entries.

The question is: If we choose our numbers so that the

number of distinct entries in one table is small, must the

other always be large? (More precisely, if ε > 0 is fixed and N

is sufficiently large, must every choice of N numbers have the

number of distinct entries in the addition and multiplication

tables be > N2−ε?)



The game players with the sum/product problem include:

Erdős, Szemerédi, Nathanson, Chen, Elekes, Bourgain,

Chang, Konyagin, Rudnev, Shkredov, Green, Tao,

Solymosi, . . .

The best that’s been proved (Solymosi) is that one table must

have at least N4/3 different entries. (Improved recently by

Konyagin & Rudnev to N4/3+5/9813.)

This list of mathematicians contains two Fields Medalists, a

Wolf Prize winner, an Abel Prize winner, four Salem Prize

Winners, two Crafoord Prize winners, and an Aisenstadt Prize

winner.

And still the problem is not solved!
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My message: We could use a little help with these problems!!
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My message: We could use a little help with these problems!!

THANK YOU
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