
Some Recent Research Work and Plans
My recent work is mostly about interactions between geometric topology, contact geometry,

Lorentz geometry and their applications to the theoretical aspects of general relativity.
In particular, I study relations between causality and Legendrian linking. Two points in a

spacetime are said to be causally related if it is possible to get from one to the other moving at
less or equal than light speed. One of the central results obtained in our joint works with Stefan
Nemirovski [11, 12] is that for a large class of spacetimes two points are causally related if and only
if the spheres of all light rays through these points are Legendrian linked in the contact manifold
of all light rays. This means that one can tell if two events are causally related or not from the set
of points in the universe where the events are visible at any given moment of time (level set of a
timelike function). Below I provide the necessary background and state this and other results more
formally.

1. Backrgound

LetQ2k−1 be an odd dimensional manifold equipped with a smooth hyperplane field ζ = {ζ2k−2
q ⊂

TqQ
2k−1

∣∣ q ∈ Q}. This hyperplane field is called a contact structure, if it can be locally presented

as the kernel of a 1-form α with α ∧ (dα)k−1 that is nowhere zero.
A (k−1)-dimensional submanifold of a contact manifold is Legendrian if is is everywhere tangent

to the contact hyperplanes. A standard example of the contact manifold is the spherical cotangent
bundle ST ∗M of an m-dimensional manifold Mm.

Let (Xm+1, g) be a Lorentz manifold. A non-zero vector v ∈ TxX is called non-spacelike (respec-
tively null or lightlike), if g(v,v) is non-positive (respectively zero). Such vectors correspond to
velocities of particles moving at speed that is less or equal than (respectively equal to) light speed.

A null (lightlike) curve is a piecewise smooth curve all of whose velocity vectors are null. Non-
spacelike curves are defined similarly. A submanifold M ⊂ X is spacelike if the restriction of g to
TM is a Riemann metric.

All non-spacelike vectors in TxX form a cone consisting of two hemicones. A continuous with
respect to x ∈ X choice of one of the two hemicones is called a time orientation of (X, g). Vectors
from the chosen hemicones are called future pointing. A time oriented connected Lorentz manifold
is a spacetime and its points are events.

The causal future J+(x) ⊂ X of x ∈ X is the set of all y ∈ X that can be reached by a future
pointing non-spacelike curve from x. The causal past J−(x) is defined similarly. Two events x, y
are said to be causally related if x ∈ J+(y) or y ∈ J+(x).

A Cauchy surface in (X, g) is a subset such that every non-spacelike curve γ(t) (defined on
the maximal possible domain) intersects it at exactly one value of t. A spacetime that has a
Cauchy surface is called globally hyperbolic. (This is equivalent to the standard definition of global
hypebolicity, see [23, pp. 211–212].) Globally hyperbolic spacetimes form probably the most
important and studied class of spacetimes.

Bernal and Sanchez [2, Theorem 1], [3, Theorem 1.1], [4, Theorem 1.2] strengthened the classical
result of Geroch [22]. They showed that every globally hyperbolic spacetime (X, g) admits a smooth
spacelike Cauchy surface M and X is diffeomorphic to the product M × R with the projection to
the R-component been a timelike function.

Low [28, 29] proved that the space NX of all future directed light rays (null geodeics) in a
globally hyperbolic (X, g) is a contact manifold and it is contactomorphic to ST ∗M, where M is
any smooth spacelike Cauchy surface. (Similar results can be proved for more general spacetimes,
see [28, 29, 31, 24, 7].) The redshift between two Cauchy surfaces can be interpreted [15] as the
ratio of the associated contact forms on the space of light rays. The sphere of all light rays through
x ∈ X is Legendrian and it is called the sky Sx of x.
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2. Legendrian Low conjecture and other recent results and research plans

In our works with Stefan Nemirovski [11, Theorem A], [12, Theorem 10.4] we proved:

Theorem 1 (Chernov, Nemirvoski). Let Xm+1,m ≥ 2 be a globally hyperbolic spacetime for which
the universal cover of its Cauchy surface M is noncompact. Then the statement that x, y ∈ X are
causally unrelated is equivalent to the statement that (Sx, Sy) is a trivial Legendrian link.

The Legendrian link (Sx, Sy) can be easily reconstructed from the cooriented intersection of the
cones of all light rays through x and y with a Cauchy surface M . Thus the above theorem says
that causal relation between two events can be determined from the set of points in the universe
where the two events are visible at a given moment of time (level set of a timelike function).

When M is homeomorphic to R3 the above result proves the Legendrian Low conjecture formu-
lated by Natario and Tod [31]. The 3-dimensional Poincare conjecture proved by Perelman [33, 34]
combined with our results says that if the universal cover of the Cauchy surface M3 of a 4-
dimensional spacetime X is not S3, then causal relation of x, y ∈ X is equivalent to the Legendrian
linking of Sx and Sy. If the universal cover of M is S3, then Elliptization conjecture [33, 34] implies
that one can put a strongly refocusing Lorentz metric on M × R = X. (A spacetime is strongly
refocusing if it has a pair of points u, v such that all light rays through u pass through v.) One
can show that the statement of Theorem 1 is false for strongly refocusing spacetimes. Refocusing
of light rays is closely related [17, Remark 7], [10] to the Y x

` Riemann manifolds that are manifolds
for which all the unit speed geodesics starting from the point x return back to x after time l, see
Besse [5]. So for example, the unit sphere is the Y x

2π manifold for every point x.
Theorem 1 also establishes that causality is equivalent to Legendrian linking for globally hy-

perbolic spacetimes Xm+1,m > 3 when the universal covering of a Cauchy surface Mm is a non-
compact manifold.

This year I used the Bott-Samelson [6] type results of Frauenfelder, Labrousse and Schlenk [21] to

show [9] that Legendrian linking is equivalent to causality in the case where the universal cover M̃
of the Cauchy surface Mm,m > 3 is compact but does not have the integral cohomology ring of a
Compact Rank One Symmetric Space (CROSS). The question about the relation between causality

and linking for globally hyperbolic spacetimes for which the integral cohomology ring of M̃ is the
one of a CROSS remains open and I intend to study it in the future. This is closely related to the
question which ones of such manifolds admit a Y x

` Riemann metric.
I also expect that causality is equivalent to linking for the non-refocusing causally simple space-

time. (A causal spacetime is causally simple if the causal future and past of each point is a closed
set, and each globally hyperbolic spacetime is causally simple. Such spacetimes are important
because they allow the so called naked singularities.) Some evidence supporting this conjecture is
provided in my paper [8] and I plan to study this question in the future.

The techniques used to prove Theorem 1 also allowed us to prove [12, Corollary 9.1] that the
group of contactomorphisms of ST ∗M is orderable for all M . This extends the results of Eliashberg-
Kim-Polterovich [19] that left some of the cases open.

Using Theorem 1 and Ding-Geiges work [18], we proved [11, Theorem B] the following result
relating causality and the topological (non Legendrian) linking.

Theorem 2 (Chernov, Nemirovski). Let (X, g) be a (2 + 1)-dimensional globally hyperbolic space-
time for which the universal cover of its Cauchy surface is non-compact. Then the statement that
x, y are causally unrelated is equivalent to the statement that (Sx, Sy) is a trivial topological link.

When the Cauchy surface is noncompact, the above statement proves the Low conjecture [25].
Robert Low was working on the question suggested by his advisor Roger Penrose. The problem
communicated by Penrose on the Arnold’s problem list [1, Problem 1998-21] asks to study the
relation between causality and linking. The above results can be viewed as the solution to the
problem.
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A key ingredient in our proof [11, 12] of the statement that Legendrian linking in a globally
hyperbolic spacetime X is equivalent to causality, is the space L of all Legendrian submanifolds of
ST ∗M = NX that are Legendrian isotopic to the fiber of ST ∗M . (Here M is the Cauchy surface.)
One can show that L is an infinite-dimensional manifold equipped with a distribution of cones.
The two halves of the cones correspond to the velocity vectors of paths in L that are the so-called
positive and negative Legendrian isotopies. Thus L comes with the natural causal structure. The
spacetime X has a natural conformal embedding into L which sends x ∈ X to the Legendrian sphere
Sx ⊂ NX = ST ∗M of all the light rays through x. The fact that linking determines causality for
a given spacetime can be reformulated as the statement that L does not have closed trajectories
whose velocity vectors are always pointing inside of the half-cones. Spacetimes with such property
are called causal and the absence of such trajectories means that time travel is not possible in a
spacetime. Jointly with Nemirovski we proved that the universal cover of L is always causal [14]
and I plan to to explore if it is in fact always strongly causal. (A spacetime is strongly causal if for
every point p there exists a neighborhood U of p such that there exists no causal curve that passes
through U more than once.)

The skies of events in Xm+1 are (m−1)-dimensional spheres in the (2m−1)-dimensional manifold
of all light rays. In our works [16, 17] with Yuli Rudyak we constructed the “affine linking”
invariant alk that generalizes the linking number to the case where the link components are nonzero
homologus and applied it to the study of causality.

Of course alk is a topological rather than contact invariant, so there is no hope that alk can
always detect that the Legendrian link (Sx, Sy) is nontrivial. However the following result [17,
Theorem 2, Theorem 3] says that it often completely detects causality:

Theorem 3 (Chernov, Rudyak). Let X be a globally hyperbolic spacetime, such that all of its
timelike sectional curvatures are nonnegative. Assume moreover that the Cauchy surface M is not
an odd-dimensional Q-homology sphere. Then alk(Sx, Sy) is a well defined Z-valued invariant and
alk(Sx, Sy) = 0 if and only if the events x, y are causally unrelated.

Jointly with Nemirovski we showed [13] that a smooth 4-manifold homeomorphic to the product
of a closed oriented 3-manifoldM and R and admitting a globally hyperbolic Lorentz metric is in fact
diffeomorphic to M×R. (The poof uses the Geometrization conjecture proved by Perelman [33, 34],
results of Bernal and Sanchez [2, 3, 4] and results of Turaev [35].) If M is a nonorientable or a
nonclosed manifold, it is not known if a similar statement is true. Globally hyperbolic spacetimes
are all homeomorphic to some M × R, and it would be interesting to know if global hyperbolicity
determines the smooth structure for such 4-manifolds. I expect this question to be very hard.

Newman and Clarke [32] showed that for a globally hyperbolic spacetime diffeomorphic to R4

its Cauchy surface M does not have to be homeomorhic to R3 and could be another contractible
3-manifold. It seems likely that for a globally hyperbolic spacetime X its contact manifold NX =
ST ∗M of light rays should often determine M. In the language of contact topology the question is if
there is a large class of manfioldsM such that one can conclude that M1,M2 ∈M are diffeomorphic
provided that ST ∗M1 and ST ∗M2 are contactomorphic. This is another problem I plan to study,
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